This is the scikit-learn error that I get when I do
my_estimator = LassoLarsCV(fit_intercept=False, normalize=False, positive=True, max_n_alphas=1e5)
Please note that if I reduce max_n_alphas from 1e5 to 1e4, I no longer get this error.
Anyone have an idea what is going on?
An error occurs when I call
my_estimator.fit(x, y)
I have 40k data points in 40 dimensions.
A full stack trace looks like this:
File "/usr/lib64/python2.7/site-packages/sklearn/linear_model/least_angle.py", line 1113, in fit axis=0)(all_alphas) File "/usr/lib64/python2.7/site-packages/scipy/interpolate/polyint.py", line 79, in __call__ y = self._evaluate(x) File "/usr/lib64/python2.7/site-packages/scipy/interpolate/interpolate.py", line 498, in _evaluate out_of_bounds = self._check_bounds(x_new) File "/usr/lib64/python2.7/site-packages/scipy/interpolate/interpolate.py", line 525, in _check_bounds raise ValueError("A value in x_new is below the interpolation " ValueError: A value in x_new is below the interpolation range.
source share