As an output graph of non-linear regression analysis at this link
https://stats.stackexchange.com/questions/209087/non-linear-regression-mixed-model
With this dataset:
zz <-(" iso temp diam Itiquira 22 5.0 Itiquira 22 4.7 Itiquira 22 5.4 Itiquira 25 5.8 Itiquira 25 5.4 Itiquira 25 5.0 Itiquira 28 4.9 Itiquira 28 5.2 Itiquira 28 5.2 Itiquira 31 4.2 Itiquira 31 4.0 Itiquira 31 4.1 Londrina 22 4.5 Londrina 22 5.0 Londrina 22 4.4 Londrina 25 5.0 Londrina 25 5.5 Londrina 25 5.3 Londrina 28 4.6 Londrina 28 4.3 Londrina 28 4.9 Londrina 31 4.4 Londrina 31 4.1 Londrina 31 4.4 Sinop 22 4.5 Sinop 22 5.2 Sinop 22 4.6 Sinop 25 5.7 Sinop 25 5.9 Sinop 25 5.8 Sinop 28 6.0 Sinop 28 5.5 Sinop 28 5.8 Sinop 31 4.5 Sinop 31 4.6 Sinop 31 4.3" ) df <- read.table(text=zz, header = TRUE)
And this rigged model with four parameters:
Thank you: Optimum temperature
yours: diameter at optimal
thq: Curvature
thc: asymmetry
library(nlme) df <- groupedData(diam ~ temp | iso, data = df, order = FALSE) n0 <- nlsList(diam ~ thy * exp(thq * (temp - thx)^2 + thc * (temp - thx)^3), data = df, start = c(thy = 5.5, thq = -0.01, thx = 25, thc = -0.001)) > n0 # Call: # Model: diam ~ thy * exp(thq * (temp - thx)^2 + thc * (temp - thx)^3) | iso # Coefficients: thy thq thx thc # Itiquira 5.403118 -0.007258245 25.28318 -0.0002075323 # Londrina 5.298662 -0.018291649 24.40439 0.0020454476 # Sinop 5.949080 -0.012501783 26.44975 -0.0002945292 # Degrees of freedom: 36 total; 24 residual # Residual standard error: 0.2661453
Is there a way to build the set values ββin ggplot, like a specific smooth () function?

I think I found ... (based on http://rforbiochemists.blogspot.com.br/2015/06/plotting-two-enzyme-plots-with-ggplot.html )
ip <- ggplot(data=daf, aes(x=temp, y=diam, colour = iso)) + geom_point() + facet_wrap(~iso) ip + geom_smooth(method = "nls", method.args = list(formula = y ~ thy * exp(thq * (x-thx)^2 + thc * (x - thx)^3), start = list(thy=5.4, thq=-0.01, thx=25, thc=0.0008)), se = F, size = 0.5, data = subset(daf, iso=="Itiquira")) + geom_smooth(method = "nls", method.args = list(formula = y ~ thy * exp(thq * (x-thx)^2 + thc * (x - thx)^3), start = list(thy=5.4, thq=-0.01, thx=25, thc=0.0008)), se = F, size = 0.5, data = subset(daf, iso=="Londrina")) + geom_smooth(method = "nls", method.args = list(formula = y ~ thy * exp(thq * (x-thx)^2 + thc * (x - thx)^3), start = list(thy=5.4, thq=-0.01, thx=25, thc=0.0008)), se = F, size = 0.5, data = subset(daf, iso=="Sinop"))
