I edited the answer to also satisfy the situation when one recipient can receive money from several persons , and not only from one. Look down.
An interesting problem - I had to code it. Pseudo and data here, as done with Dyalog APL .
Often the only way to ensure optimality is to use brute force. For your problem, this works well when the number of participants is about 12 or less:
ââââ¬âââ¬âââ¬âââ¬ââââ¬ââââ¬ââââââ¬âââââââ¬ââââââââ¬ââââââââââ¬âââââââââââ¬ââââââââââââ¬ââââââââââââââ¬âââââââââââââââ¬ââââââââââââââââââ â!1â!2â!3â!4â!5 â!6 â!7 â!8 â!9 â!10 â!11 â!12 â!13 â!14 â!15 â ââââŒâââŒâââŒâââŒââââŒââââŒââââââŒâââââââŒââââââââŒââââââââââŒâââââââââââŒââââââââââââŒââââââââââââââŒâââââââââââââââŒâââââââââââââââââ†â1 â2 â6 â24â120â720â5,040â40,320â362,880â3,628,800â39,916,800â479,001,600â6,227,020,800â87,178,291,200â1,307,674,368,000â ââââŽâââŽâââŽâââŽââââŽââââŽââââââŽâââââââŽââââââââŽââââââââââŽâââââââââââŽââââââââââââŽââââââââââââââŽâââââââââââââââŽââââââââââââââââââ
As we can see, the factorial of numbers is growing rapidly. If there are 10 participants, then all the same reasonable 3.6 million, 12 guys already make up 1/2 billion. You probably shouldn't think about that anymore.
If, however, we are talking about small enough gangs, itâs trivial to calculate (with the exception of one).
You set this condition:
The shares that depositors must pay for a certain expense need not be equal.
This does not change the calculation itself, but I leave out of this answer how the shares were concluded. You must have a way to determine what belongs to whom. It is essential for the calculation here that the amounts of what must be paid and what was paid are equal .
Consider the following example:
We have 4 guys who consumed 400 bucks. One guy paid for it, and they decided to share the cost equally:
ââââââââââââ¬ââââ¬ââââ¬ââââ¬ââââ¬ââââââ âGuy â1 â2 â3 â4 âTotalâ ââââââââââââŒââââŒââââŒââââŒââââŒâââââ†âShould payâ100â100â100â100â400 â ââââââââââââŒââââŒââââŒââââŒââââŒâââââ†âPayed â0 â0 â0 â400â400 â ââââââââââââŽââââŽââââŽââââŽââââŽââââââ
Since guy number 1 paid 0, he apparently needs to pay an extra 100, etc. This is a simple case. Only decision:
1 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬âââââââ¬âââââââ¬âââââââ¬âââââââ¬ââââââ¬âââââââââ âGuy # â1 â2 â3 â4 âTotalâTurnoverâ âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âShould pay â100 â100 â100 â100 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âHas paid â0 â0 â0 â400 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âGets from the one to leftâ0.00 â100.00â200.00â300.00â â600 â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âPays to the one to right â100.00â200.00â300.00â0.00 â â600 â âââââââââââââââââââââââââââŽâââââââŽâââââââŽâââââââŽâââââââŽââââââŽâââââââââ
Note that the wraps - leftmost and rightmost tables are "neighbors".
We see that almost every guy makes a payment to his neighborâs right column in the table and likewise receives one from his left neighbor. By adding what he initially paid, what he receives now, and what he pays now, he completes the correct total expense assigned to him.
However, if # 2 paid 100 and # 4 paid 300:
ââââââââââââ¬ââââ¬ââââ¬ââââ¬ââââ¬ââââââ âGuy â1 â2 â3 â4 âTotalâ ââââââââââââŒââââŒââââŒââââŒââââŒâââââ†âShould payâ100â100â100â100â400 â ââââââââââââŒââââŒââââŒââââŒââââŒâââââ†âPayed â0 â100â0 â300â400 â ââââââââââââŽââââŽââââŽââââŽââââŽââââââ
we get 3 solutions, below the best:
3 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬âââââââ¬âââââââ¬âââââââ¬âââââ¬ââââââ¬âââââââââ âGuy # â1 â3 â4 â2 âTotalâTurnoverâ âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââŒââââââŒââââââââ†âShould pay â100 â100 â100 â100 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââŒââââââŒââââââââ†âHas paid â0 â0 â300 â100 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââŒââââââŒââââââââ†âGets from the one to leftâ0.00 â100.00â200.00â0.00â â300 â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââŒââââââŒââââââââ†âPays to the one to right â100.00â200.00â0.00 â0.00â â300 â âââââââââââââââââââââââââââŽâââââââŽâââââââŽâââââââŽâââââŽââââââŽâââââââââ
and worst:
Worst solution: âââââââââââââââââââââââââââ¬âââââââ¬âââââââ¬âââââââ¬âââââââ¬ââââââ¬âââââââââ âGuy # â1 â2 â4 â3 âTotalâTurnoverâ âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âShould pay â100 â100 â100 â100 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âHas paid â0 â100 â300 â0 â400 â â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âGets from the one to leftâ100.00â200.00â200.00â0.00 â â500 â âââââââââââââââââââââââââââŒâââââââŒâââââââŒâââââââŒâââââââŒââââââŒââââââââ†âPays to the one to right â200.00â200.00â0.00 â100.00â â500 â âââââââââââââââââââââââââââŽâââââââŽâââââââŽâââââââŽâââââââŽââââââŽâââââââââ
The aforementioned is worse, because the total turnover in the settlement of payments is greater. You had this criterion:
I would like to minimize the excessive amount of money that a person receives in addition to what he or she actually owes.
In most cases this seems possible, but I doubt that there is any guarantee for this.
Now consider this situation:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 âTotalâ ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âShould payâ10â10â10â10â10â10â10â10â80 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âPayed â0 â0 â0 â0 â0 â0 â0 â80â80 â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ
The optimal (and only) solution:
1 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬âââââââââ âGuy # â1 â2 â3 â4 â5 â6 â7 â8 âTotalâTurnoverâ âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââââ†âShould pay â10 â10 â10 â10 â10 â10 â10 â10 â80 â â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââââ†âHas paid â0 â0 â0 â0 â0 â0 â0 â80 â80 â â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââââ†âGets from the one to leftâ0.00 â10.00â20.00â30.00â40.00â50.00â60.00â70.00â â280 â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒââââââââ†âPays to the one to right â10.00â20.00â30.00â40.00â50.00â60.00â70.00â0.00 â â280 â âââââââââââââââââââââââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽâââââââââ
We see that the payment amount is increasing. Despite the fact that No. 7 has a debt of 10, he gets 60 and pays 70. The reason is that all the other guys should accumulate / increase the amount sufficient to pay up to # 8. As a criterion, that was No. 8 ( and every other person too) can receive money only from one other guy, and not from several.
Now consider a more complex task - each of them made their choice from the menu. Some paid for their own food, and # 8 took care of paying for # 1, No. 3, No. 5, No. 7 and themselves:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 âTotalâ ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âShould payâ10â25â12â18â16â10â18â15â124 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âPayed â0 â25â0 â18â0 â10â0 â71â124 â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ
The result is pretty good. Those who paid for themselves will not be touched:
97 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬ââââââ¬âââââ¬âââââ¬âââââ¬ââââââ¬âââââââââ âGuy # â1 â3 â5 â7 â8 â2 â4 â6 âTotalâTurnoverâ âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âShould pay â10 â12 â16 â18 â15 â25 â18 â10 â124 â â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âHas paid â0 â0 â0 â0 â71 â25 â18 â10 â124 â â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âGets from the one to leftâ0.00 â10.00â22.00â38.00â56.00â0.00â0.00â0.00â â126 â âââââââââââââââââââââââââââŒââââââŒââââââŒââââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âPays to the one to right â10.00â22.00â38.00â56.00â0.00 â0.00â0.00â0.00â â126 â âââââââââââââââââââââââââââŽââââââŽââââââŽââââââŽââââââŽââââââŽâââââŽâââââŽâââââŽââââââŽâââââââââ
Then the case when, apparently, the good guys emptied all their pockets and received 124 dollars:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 âTotalâ ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âShould payâ10â25â12â18â16â10â18â15â124 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âPayed â17â20â10â19â10â20â16â12â124 â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ
Pretty good! No big money to move:
67 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬âââââ¬âââââ¬âââââ¬âââââ¬ââââââ¬ââââââ¬âââââ¬âââââ¬ââââââ¬âââââââââ âGuy # â1 â3 â4 â8 â5 â6 â7 â2 âTotalâTurnoverâ âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒââââââŒââââââââ†âShould pay â10 â12 â18 â15 â16 â10 â18 â25 â124 â â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒââââââŒââââââââ†âHas paid â17 â10 â19 â12 â10 â20 â16 â20 â124 â â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒââââââŒââââââââ†âGets from the one to leftâ7.00â0.00â2.00â1.00â4.00 â10.00â0.00â2.00â â26 â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒââââââŒââââââââ†âPays to the one to right â0.00â2.00â1.00â4.00â10.00â0.00 â2.00â7.00â â26 â âââââââââââââââââââââââââââŽâââââŽâââââŽâââââŽâââââŽââââââŽââââââŽâââââŽâââââŽââââââŽâââââââââ
And finally, the case when everything paid an equal amount, but obligations were differently resolved: must pay the same, but pay differently:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 âTotalâ ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âShould payâ10â10â10â10â10â10â10â10â80 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âPayed â7 â20â10â5 â10â10â6 â12â80 â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ
Tiny Turnover:
54 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬âââââ¬âââââ¬âââââ¬ââââââ¬ââââââ¬âââââ¬âââââ¬âââââ¬ââââââ¬âââââââââ âGuy # â1 â8 â7 â4 â2 â3 â5 â6 âTotalâTurnoverâ âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âShould pay â10 â10 â10 â10 â10 â10 â10 â10 â80 â â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âHas paid â7 â12 â6 â5 â20 â10 â10 â10 â80 â â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âGets from the one to leftâ0.00â3.00â1.00â5.00 â10.00â0.00â0.00â0.00â â19 â âââââââââââââââââââââââââââŒâââââŒâââââŒâââââŒââââââŒââââââŒâââââŒâââââŒâââââŒââââââŒââââââââ†âPays to the one to right â3.00â1.00â5.00â10.00â0.00 â0.00â0.00â0.00â â19 â âââââââââââââââââââââââââââŽâââââŽâââââŽâââââŽââââââŽââââââŽâââââŽâââââŽâââââŽââââââŽâââââââââ
How to make this calculation
As we do this with brute force, this means generating all permutations of the number of participants. This can be a tricky part. As an example, all the permutations (1,2,3,4) below (column by column, to increase readability):
1 1 1 1 1 1 2 2 2 2 2 2 3 3 3 3 3 3 4 4 4 4 4 4 2 2 3 3 4 4 1 1 3 3 4 4 1 1 2 2 4 4 1 1 2 2 3 3 3 4 2 4 2 3 3 4 1 4 1 3 2 4 1 4 1 2 2 3 1 3 1 2 4 3 4 2 3 2 4 3 4 1 3 1 4 2 4 1 2 1 3 2 3 1 2 1
You are better off looking for this generation. This is normal if this happens in a loop. It is essential that you can access one column in time (or a row if they are different).
Pseudo:
// NOTE: The data is written as arrays // For example "0 0 0 0" implies a 4-element array (vector) of integers // Of course there may be other number of participants ("guys"), // then we need "other-element" arrays, for example 7-element ones // The code below may require additional looping ToPay = 100 100 100 100 // Topmost example in this answer HasPayed = 0 0 0 400 // Ditto // Calculate debt // This probably requires a loop from 1...4 Debt[n] = ToPay[n] - HasPayed[n] // Debt is now: 100 100 100 -300 smallest = 9999999 // Sufficiently big initial value :For Row :In [each permutation of (1 2 3 4) // Row is now for example: 2 4 3 1 Test = Debt[Row] // Test is now for example: 100 -300 100 100 Accu = [4-element vector of zeroes] Accu[1] = Row[1] minimum = Row[1] s = 2 :Repeat Accu[s] = Accu[s-1] + Row[s] minimum = min(minimum, Accu[s]) // We simply grab the smalles element in Accu s += 1 :Until (s > 4) // As this is ready, Accu may contain eg. 100 -200 -100 0 // and minimum would then contain -200 sum = 0 t = 1 :Repeat Accu[t] -= minimum sum += Accu[t] t += 1 :Until (t > 4) // When ready, Accu would be eg. 300 0 100 200 // and sum would be 300+0+100+200, ie. 600 :If (sum < smallest) [store Row as best so far, for example into "BestRow"] [store Accu, for example into BestAccu"] smallest = sum :End :End
Now
- BestRow contains the order in which the guy pays another (from left to right), for example 1 2 3 4 (= 1 pays 2, 2 pays 3, 3 pays 4, 4 pays 1).
- BestAccu contains the amount that the guy should pay to the right, for example 100,200,300.
You can apply other criteria for the "best way", but this solution minimizes the amount of "moved" money and saves transactions per payment per person.
It should also be noted that there are many âbetter solutionsâ where one permutation gives the same minimum turnover as another redistribution. In the last example, the number of equally good solutions was (the worst):
48 96 144 144 240 240 480 336 672 432 768 912 960 768 1296 864 1392 1104 1200 1056 1488 1488 1488 1200 1344 1152 1776 1056 1344 1056 1152 1152 1344 768 1104 768 1056 720 912 480 672 528 528 240 576 288 432 192 288 144 240 48 96 48
... means 48 "best solutions", 96 "second best", etc.
Edit:
I was told about a criterion that I mistakenly assumed: "A person can only receive money from one other person. This was not so, any person can give money only to one other person, but he does not have money , one person or several people.
It turns out that the above solution was almost complete. To solve this new condition, you only need to process the result a little. Namely, the accumulations that now exist in the aforementioned logic, where several people in a row can accumulate more and more money, while at the same time contributing to accumulation in order to pay off the one who made the big payment ("Mr. X"), is the accumulation must be dismantled, so that the cumulative part of it will be paid directly to X, and not through other participants.
Consider this situation:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âGuy â1 â2 â3 â4 â5 â6 âTotalâ ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âShould payâ10â10â20â30â10â20â100 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âPayed â35â0 â25â0 â0 â40â100 â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ
Although it looks simple, it is rather difficult to solve by calculating the head, since it is circular. Using earlier methods, we get a "cumulative" answer:
22 solutions with unique transfer sums. Best solution: âââââââââââââââââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ¬âââââââââ âGuy
Then we can resolve the debt for each of them, this is the second row - the third row (positive debt):
âââââ¬âââ¬âââ¬âââ¬ââââ¬âââ â-25â-5â10â10â-20â30â âââââŽâââŽâââŽâââŽââââŽâââ
Using this, we can solve something called "accumulation" that the 5th line is a debt:
ââââ¬ââ¬ââ¬âââ¬âââ¬ââ â30â5â0â10â20â0â ââââŽââŽââŽâââŽâââŽââ
From this, we can decide which payments can be changed from âpay the guy to the rightâ for the âpaid guy #nâ - this simply happens by comparing the pairs from the accumulation and comparing the last element of the accumulation with the first (since this problem is circular). (30 < 5), (5 < 0), (0 < 10) ..; (0 < 30):
âââ¬ââ¬ââ¬ââ¬ââ¬ââ â0â0â1â1â0â1â âââŽââŽââŽââŽââŽââ
1 , - , #n.
#n? #n . 3 4 ( â 2 â 5 ) â6 - , â2 â5, .
, , . , , ( ) , . :
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ âGuy â1 â3 â2 â5 â6 â4 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒââ†âShould payâ10â20â10â10â20â30â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒââ†âPayed â35â25â0 â0 â40â0 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒââ†âPays to â3 â â6 â6 â â1 â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒââ†âAmount â5 â â10â10â â30â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââ
, â1, "", 5 â3. , â 4 ( ) 30, - "" # 1, # 1 â3 5 -, 1 . , # 6 20 # 2 â5. , ?: -)
( ). 2 :
ââââââââââââ¬âââ¬âââ¬âââ¬ââ¬ââ¬âââ¬âââ¬âââ¬ââââââ âââââââââ¬ââ¬ââ¬âââ¬âââ¬ââ¬ââ¬âââ¬âââ âGuy â1 â2 â3 â4â5â6 â7 â8 âTotalâ âGuy â1â5â6 â8 â2â4â7 â3 â ââââââââââââŒâââŒâââŒâââŒââŒââŒâââŒâââŒâââŒâââââ†âââââââââŒââŒââŒâââŒâââŒââŒââŒâââŒââ†âShould payâ7 â11â13â8â5â10â12â14â80 â âPays toâ â2â2 â2 â â1â1 â1 â ââââââââââââŒâââŒâââŒâââŒââŒââŒâââŒâââŒâââŒâââââ†âââââââââŒââŒââŒâââŒâââŒââŒââŒâââŒââ†âPayed â40â40â0 â0â0â0 â0 â0 â80 â âAmount â â5â10â14â â8â12â13â ââââââââââââŽâââŽâââŽâââŽââŽââŽâââŽâââŽâââŽââââââ âââââââââŽââŽââŽâââŽâââŽââŽââŽâââŽâââ
:
ââââââââââââ¬âââ¬ââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââââââ âââââââââ¬ââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââ¬âââ¬ââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 â9 â10âTotalâ âGuy â1â3 â7 â4 â10â6 â8 â2â5 â9â ââââââââââââŒâââŒââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âââââââââŒââŒâââŒâââŒâââŒâââŒâââŒâââŒââŒâââŒâ†âShould payâ10â10 â10â12â10â19â11â33â6 â12â133 â âPays toâ2â2 â2 â2 â2 â2 â2 â â9 â1â ââââââââââââŒâââŒââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââââ†âââââââââŒââŒâââŒâââŒâââŒâââŒâââŒâââŒââŒâââŒâ†âPayed â5 â112â0 â0 â0 â1 â0 â0 â15â0 â133 â âAmount â6â10â11â12â12â18â33â â10â1â ââââââââââââŽâââŽââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââââââ âââââââââŽââŽâââŽâââŽâââŽâââŽâââŽâââŽââŽâââŽââ
:
ââââââââââââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬âââ¬ââ¬âââ¬ââââââ âââââââââ¬âââ¬âââ¬ââ¬ââ¬ââ¬ââ¬ââ¬âââ¬âââ¬ââ âGuy â1 â2 â3 â4 â5 â6 â7 â8 â9â10âTotalâ âGuy â1 â10â4â9â5â3â6â7 â8 â2â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒââŒâââŒâââââ†âââââââââŒâââŒâââŒââŒââŒââŒââŒââŒâââŒâââŒâ†âShould payâ10â10â5 â12â10â19â11â33â6â12â128 â âPays toâ10â â9â5â3â â2â2 â2 â â ââââââââââââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒâââŒââŒâââŒâââââ†âââââââââŒâââŒâââŒââŒââŒââŒââŒââŒâââŒâââŒâ†âPayed â7 â50â10â10â6 â12â1 â10â7â15â128 â âAmount â3 â â2â1â5â â7â10â23â â ââââââââââââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽâââŽââŽâââŽââââââ âââââââââŽâââŽâââŽââŽââŽââŽââŽââŽâââŽâââŽââ
, .