As for even later versions of Bokeh ( 0.12.14 or so), it's even simpler. Corrected ticks can be passed directly as a βtickerβ value, and basic label overrides can be provided to explicitly indicate custom labels for specific values:
from bokeh.io import output_file, show from bokeh.plotting import figure p = figure() p.circle(x=[1,2,3], y=[4,6,5], size=20) p.xaxis.ticker = [1, 2, 3] p.xaxis.major_label_overrides = {1: 'A', 2: 'B', 3: 'C'} output_file("test.html") show(p)

NOTE. In the old version below is a link to the bokeh.charts , which has since been deprecated and removed
Starting with recent releases of Bokeh (e.g. 0.12.4 or later), it is now much easier to accomplish with FuncTickFormatter :
import pandas as pd from bokeh.charts import Bar, output_file, show from bokeh.models import FuncTickFormatter skills_list = ['cheese making', 'squanching', 'leaving harsh criticisms'] pct_counts = [25, 40, 1] df = pd.DataFrame({'skill':skills_list, 'pct jobs with skill':pct_counts}) p = Bar(df, 'index', values='pct jobs with skill', title="Top skills for ___ jobs", legend=False) label_dict = {} for i, s in enumerate(skills_list): label_dict[i] = s p.xaxis.formatter = FuncTickFormatter(code=""" var labels = %s; return labels[tick]; """ % label_dict) output_file("bar.html") show(p)
source share