I have a basic world map and it is populated with data (lintrends_mean) using pcolormesh. Since the data has relatively large grids, I would like to smooth the graph. However, I cannot figure out how to do this. Setting the shading = 'gouraud' in the drawing function blurs the edges of the grid cells, but I would like to get something more pleasant than this, because the data still seems spotty.
A similar question was asked here with the answer, but I do not understand the answer, especially in cases where a "new step" occurs. I cannot comment on this for clarification either since I lost my reputation. interpolation using matplotlib pcolor
#Set cmap properties bounds = np.array([0.1,0.2,0.5,1,2,3,4,6,9,13,20,35,50]) norm = colors.LogNorm(vmin=0.01,vmax=55) #creates logarithmic scale #cmap.set_under('#000099') # I want to use this- edit in Paint cmap.set_over('#660000') # everything above range of colormap fig = plt.figure(figsize=(15.,10.)) #create figure & size m = Basemap(projection='cyl',llcrnrlat=-90,urcrnrlat=90,llcrnrlon=0,urcrnrlon=360.,lon_0=180.,resolution='c') #create basemap & specify data area & res m.drawcoastlines(linewidth=1) m.drawcountries(linewidth=1) m.drawparallels(np.arange(-90,90,30.),linewidth=0.3) m.drawmeridians(np.arange(-180.,180.,90.),linewidth=0.3) meshlon,meshlat = np.meshgrid(lon,lat) #meshgrid turns lats & lons into 2D arrays x,y = m(meshlon,meshlat) #assign 2D arrays to new variables trend = m.pcolormesh(x,y,lintrends_mean,cmap=plt.get_cmap('jet'),norm=norm) #plot the data & specify colormap & color range cbar=m.colorbar(trend,size="3%", label='Linear Trend (mm/day/decade)',ticks=bounds,extend="max") cbar.set_ticklabels(bounds) plt.title('Linear Trends of PR (CanESM2 1979-2014)',fontsize=16) plt.xlabel('Longitude',fontsize=10) plt.ylabel('Latitude',fontsize=10) plt.show()
