Calling tf.set_random_seed(SEED) does not affect what I can say ...
For example, running the code below several times inside the IPython laptop each time produces a different output:
import tensorflow as tf tf.set_random_seed(42) sess = tf.InteractiveSession() a = tf.constant([1, 2, 3, 4, 5]) tf.initialize_all_variables().run() a_shuf = tf.random_shuffle(a) print(a.eval()) print(a_shuf.eval()) sess.close()
If I set the seed explicitly: a_shuf = tf.random_shuffle(a, seed=42) , the result will be the same after each run. But why should I install the seed if I already call tf.set_random_seed(42) ?
Equivalent code using numpy just works:
import numpy as np np.random.seed(42) a = [1,2,3,4,5] np.random.shuffle(a) print(a)
source share