I am working on a mood analysis problem, the data looks like this:
label instances 5 1190 4 838 3 239 1 204 2 127
So my data is not balanced, as 1190 instances are tagged 5 . For classification Im scikit SVC is used . The problem is that I donโt know how to balance my data correctly in order to accurately calculate the accuracy, recall, accuracy and f1-score for the multiclass case. So I tried the following approaches:
Firstly:
wclf = SVC(kernel='linear', C= 1, class_weight={1: 10}) wclf.fit(X, y) weighted_prediction = wclf.predict(X_test) print 'Accuracy:', accuracy_score(y_test, weighted_prediction) print 'F1 score:', f1_score(y_test, weighted_prediction,average='weighted') print 'Recall:', recall_score(y_test, weighted_prediction, average='weighted') print 'Precision:', precision_score(y_test, weighted_prediction, average='weighted') print '\n clasification report:\n', classification_report(y_test, weighted_prediction) print '\n confussion matrix:\n',confusion_matrix(y_test, weighted_prediction)
Secondly:
auto_wclf = SVC(kernel='linear', C= 1, class_weight='auto') auto_wclf.fit(X, y) auto_weighted_prediction = auto_wclf.predict(X_test) print 'Accuracy:', accuracy_score(y_test, auto_weighted_prediction) print 'F1 score:', f1_score(y_test, auto_weighted_prediction, average='weighted') print 'Recall:', recall_score(y_test, auto_weighted_prediction, average='weighted') print 'Precision:', precision_score(y_test, auto_weighted_prediction, average='weighted') print '\n clasification report:\n', classification_report(y_test,auto_weighted_prediction) print '\n confussion matrix:\n',confusion_matrix(y_test, auto_weighted_prediction)
Third:
clf = SVC(kernel='linear', C= 1) clf.fit(X, y) prediction = clf.predict(X_test) from sklearn.metrics import precision_score, \ recall_score, confusion_matrix, classification_report, \ accuracy_score, f1_score print 'Accuracy:', accuracy_score(y_test, prediction) print 'F1 score:', f1_score(y_test, prediction) print 'Recall:', recall_score(y_test, prediction) print 'Precision:', precision_score(y_test, prediction) print '\n clasification report:\n', classification_report(y_test,prediction) print '\n confussion matrix:\n',confusion_matrix(y_test, prediction) F1 score:/usr/local/lib/python2.7/site-packages/sklearn/metrics/classification.py:676: DeprecationWarning: The default `weighted` averaging is deprecated, and from version 0.18, use of precision, recall or F-score with multiclass or multilabel data or pos_label=None will result in an exception. Please set an explicit value for `average`, one of (None, 'micro', 'macro', 'weighted', 'samples'). In cross validation use, for instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) /usr/local/lib/python2.7/site-packages/sklearn/metrics/classification.py:1172: DeprecationWarning: The default `weighted` averaging is deprecated, and from version 0.18, use of precision, recall or F-score with multiclass or multilabel data or pos_label=None will result in an exception. Please set an explicit value for `average`, one of (None, 'micro', 'macro', 'weighted', 'samples'). In cross validation use, for instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) /usr/local/lib/python2.7/site-packages/sklearn/metrics/classification.py:1082: DeprecationWarning: The default `weighted` averaging is deprecated, and from version 0.18, use of precision, recall or F-score with multiclass or multilabel data or pos_label=None will result in an exception. Please set an explicit value for `average`, one of (None, 'micro', 'macro', 'weighted', 'samples'). In cross validation use, for instance, scoring="f1_weighted" instead of scoring="f1". sample_weight=sample_weight) 0.930416613529
However, I get warnings like this:
/usr/local/lib/python2.7/site-packages/sklearn/metrics/classification.py:1172: DeprecationWarning: The default `weighted` averaging is deprecated, and from version 0.18, use of precision, recall or F-score with multiclass or multilabel data or pos_label=None will result in an exception. Please set an explicit value for `average`, one of (None, 'micro', 'macro', 'weighted', 'samples'). In cross validation use, for instance, scoring="f1_weighted" instead of scoring="f1"
How can I correctly process my unbalanced data to correctly calculate classifier metrics?