I am trying to calculate pairwise distances between several time series contained in a numpy array. See code below
print(type(sales))
print(sales.shape)
<class 'numpy.ndarray'>
(687, 157)
So, it salescontains 687 time series of length 157. Using pdist to calculate the distances DTW between time series.
import fastdtw
import scipy.spatial.distance as sd
def my_fastdtw(sales1, sales2):
return fastdtw.fastdtw(sales1,sales2)[0]
distance_matrix = sd.pdist(sales, my_fastdtw)
--- EDIT: tried to do this without pdist()-----
distance_matrix = []
m = len(sales)
for i in range(0, m - 1):
for j in range(i + 1, m):
distance_matrix.append(fastdtw.fastdtw(sales[i], sales[j]))
--- EDIT: parallelizing the inner loop -----
from joblib import Parallel, delayed
import multiprocessing
import fastdtw
num_cores = multiprocessing.cpu_count() - 1
N = 687
def my_fastdtw(sales1, sales2):
return fastdtw.fastdtw(sales1,sales2)[0]
results = [[] for i in range(N)]
for i in range(0, N- 1):
results[i] = Parallel(n_jobs=num_cores)(delayed(my_fastdtw) (sales[i],sales[j]) for j in range(i + 1, N) )
All methods are very slow. The parallel method takes about 12 minutes. Can anyone suggest an efficient way?
--- EDIT: following the steps given in the answer below ---
This is what the lib folder looks like:
VirtualBox:~/anaconda3/lib/python3.6/site-packages/fastdtw-0.3.2-py3.6- linux-x86_64.egg/fastdtw$ ls
_fastdtw.cpython-36m-x86_64-linux-gnu.so fastdtw.py __pycache__
_fastdtw.py __init__.py
, chython fastdtw. . , CTRL-C , , python (fastdtw.py):
/home/vishal/anaconda3/lib/python3.6/site-packages/fastdtw/fastdtw.py in fastdtw(x, y, radius, dist)
/home/vishal/anaconda3/lib/python3.6/site-packages/fastdtw/fastdtw.py in __fastdtw(x, y, radius, dist)
, .