Coq equality implementation

I write a toy language where nodes in the AST can have any number of children ( Numhas 0, Arrowhas 2, etc.). You can name these operators. In addition, exactly one node in the AST can be “focused”. We index the data type using Zif it has focus, or Hif it is not.

I need advice on several pieces of code. Hope this is good to ask everyone right away, as they are related.

  • How would you determine the type of internal nodes with one focus InternalZ? Right now I say: "We have S nchildren - nof them are not focused, but one (in some given index) is focused. A more intuitive option (which looks like lightning) will be InternalZ : forall n m, arityCode (n + 1 + m) -> Vector.t (t H) n -> t Z -> Vector.t (t H) m -> t Z. I know that I do not want to deal with this addition.

  • Types of processing: In both interesting cases, in eqI compare two n(number of children). If they are the same, I have to "coerce" tag arityCodeand Vector.tthe same type. Right now I have cracked this with two lemmas. How do I do this properly? It seems that Adam Chlipala's “convoy pattern” might help, but I could not figure out how to do this.

  • If I uncomment any of the calls Vector.eqb, Coq complains of "Unable to guess the decrease of the fix argument." I understand the error, but I'm not sure how to get around it. The first thing that comes to mind is that I may need to index tthe depth of the children.

My code is:

Module Typ.
  Import Coq.Arith.EqNat.
  Import Coq.Structures.Equalities.
  Import Coq.Arith.Peano_dec.
  Import Fin.
  Import Vector.

  (* h: unfocused, z: focused *)
  Inductive hz : Set := H | Z.

  (* how many children can these node types have *)
  Inductive arityCode : nat -> Type :=
    | Num   : arityCode 0
    | Hole  : arityCode 0
    (* | Cursor : arityCode 1 *)
    | Arrow : arityCode 2
    | Sum   : arityCode 2
    .

  Definition codeEq (n : nat) (l r : arityCode n) : bool :=
    match l, r with
      | Num, Num     => true
      | Hole, Hole   => true
      | Arrow, Arrow => true
      | Sum, Sum     => true
      | _, _         => false
    end.

  (* our AST *)
  Inductive t : hz -> Type :=
    | Leaf      : arityCode 0 -> t H
    | Cursor    : t H -> t Z
    | InternalH : forall n, arityCode n -> Vector.t (t H) n -> t H
    | InternalZ : forall n, arityCode (S n) -> Vector.t (t H) n -> Fin.t n * t Z -> t Z
    (* alternative formulation: *)
    (* | InternalZ : forall n m, arityCode (n + 1 + m) -> Vector.t (t H) n -> t Z -> Vector.t (t H) m -> t Z *)

    . 

  Lemma coerceArity (n1 n2 : nat) (pf : n1 = n2) (c1 : arityCode n1) : arityCode n2.
    exact (eq_rect n1 arityCode c1 n2 pf).
  Qed.

  Lemma coerceVec {A : Type} {n1 n2 : nat} (pf : n1 = n2) (c1 : Vector.t A n1) : Vector.t A n2.
    exact (eq_rect n1 (Vector.t A) c1 n2 pf).
  Qed.


  (* this is the tricky bit *)
  Fixpoint eq {h_or_z : hz} (ty1 ty2 : t h_or_z) : bool :=
    match ty1, ty2 with
    | Leaf c1, Leaf c2 => codeEq c1 c2
    | Cursor ty1, Cursor ty2 => eq ty1 ty2
    | InternalH n1 c1 ty1, InternalH n2 c2 ty2 =>
      match eq_nat_dec n1 n2 with
        | right _neqPrf => false
        | left eqPrf    => 
          let c1'  := coerceArity eqPrf c1 in
          let ty1' := coerceVec eqPrf ty1 in
          codeEq c1' c2 (* && Vector.eqb _ eq ty1' ty2 *)
        end
     | InternalZ n1 c1 v1 (l1, f1), InternalZ n2 c2 v2 (l2, f2) => 
       match eq_nat_dec n1 n2 with
       | right _neqPrf => false
       | left eqPrf    =>
         let eqPrf' := f_equal S eqPrf in
         let c1'    := coerceArity eqPrf' c1 in
         let v1'    := coerceVec eqPrf v1 in
         codeEq c1' c2 (* && Vector.eqb _ eq v1' v2 *) && Fin.eqb l1 l2 && eq f1 f2 
       end
    | _, _ => false
    end.
End Typ.
+6
source share
1 answer

Let's start with the third question. Vector.eqbmakes nested recursive calls on the first argument. To convince Coq that they are decreasing, we need to make the definition transparent coerceVec, replacing it Qedwith Defined:

Require Coq.Arith.EqNat.
Require Coq.Structures.Equalities.
Require Coq.Arith.Peano_dec.
Require Fin.
Require Vector.

Set Implicit Arguments.

Module Typ.
  Import Coq.Arith.EqNat.
  Import Coq.Structures.Equalities.
  Import Coq.Arith.Peano_dec.
  Import Fin.
  Import Vector.

  (* h: unfocused, z: focused *)
  Inductive hz : Set := H | Z.

  Inductive arityCode : nat -> Type :=
    | Num   : arityCode 0
    | Hole  : arityCode 0
    | Arrow : arityCode 2
    | Sum   : arityCode 2
    .

  Definition codeEq (n : nat) (l r : arityCode n) : bool :=
    match l, r with
      | Num, Num     => true
      | Hole, Hole   => true
      | Arrow, Arrow => true
      | Sum, Sum     => true
      | _, _         => false
    end.

  Inductive t : hz -> Type :=
    | Leaf      : arityCode 0 -> t H
    | Cursor    : t H -> t Z
    | InternalH : forall n, arityCode n -> Vector.t (t H) n -> t H
    | InternalZ : forall n, arityCode (S n) -> Vector.t (t H) n -> Fin.t n * t Z -> t Z
    .

  Lemma coerceArity (n1 n2 : nat) (pf : n1 = n2) (c1 : arityCode n1) : arityCode n2.
    exact (eq_rect n1 arityCode c1 n2 pf).
  Defined.

  Lemma coerceVec {A : Type} {n1 n2 : nat} (pf : n1 = n2) (c1 : Vector.t A n1) : Vector.t A n2.
    exact (eq_rect n1 (Vector.t A) c1 n2 pf).
  Defined.

  Fixpoint eq {h_or_z : hz} (ty1 ty2 : t h_or_z) : bool :=
    match ty1, ty2 with
    | Leaf c1, Leaf c2 => codeEq c1 c2
    | Cursor ty1, Cursor ty2 => eq ty1 ty2
    | @InternalH n1 c1 ty1, @InternalH n2 c2 ty2 =>
      match eq_nat_dec n1 n2 with
        | right _neqPrf => false
        | left eqPrf    =>
          let c1'  := coerceArity eqPrf c1 in
          let ty1' := coerceVec eqPrf ty1 in
          codeEq c1' c2 && Vector.eqb _ eq ty1' ty2
        end
     | @InternalZ n1 c1 v1 (l1, f1), @InternalZ n2 c2 v2 (l2, f2) =>
       match eq_nat_dec n1 n2 with
       | right _neqPrf => false
       | left eqPrf    =>
         let eqPrf' := f_equal S eqPrf in
         let c1'    := coerceArity eqPrf' c1 in
         let v1'    := coerceVec eqPrf v1 in
         codeEq c1' c2 && Vector.eqb _ eq v1' v2 && Fin.eqb l1 l2 && eq f1 f2
       end
    | _, _ => false
    end.
End Typ.

: , , coerceVec. , , , :

Require Coq.Arith.EqNat.
Require Coq.Structures.Equalities.
Require Coq.Arith.Peano_dec.
Require Fin.
Require Vector.

Set Implicit Arguments.

Module Typ.
  Import Coq.Arith.EqNat.
  Import Coq.Structures.Equalities.
  Import Coq.Arith.Peano_dec.
  Import Fin.
  Import Vector.

  (* h: unfocused, z: focused *)
  Inductive hz : Set := H | Z.

  Inductive arityCode : nat -> Type :=
    | Num   : arityCode 0
    | Hole  : arityCode 0
    | Arrow : arityCode 2
    | Sum   : arityCode 2
    .

  Definition codeEq (n1 n2 : nat) (l : arityCode n1) (r : arityCode n2) : bool :=
    match l, r with
      | Num, Num     => true
      | Hole, Hole   => true
      | Arrow, Arrow => true
      | Sum, Sum     => true
      | _, _         => false
    end.

  Inductive t : hz -> Type :=
    | Leaf      : arityCode 0 -> t H
    | Cursor    : t H -> t Z
    | InternalH : forall n, arityCode n -> Vector.t (t H) n -> t H
    | InternalZ : forall n, arityCode (S n) -> Vector.t (t H) n -> Fin.t n * t Z -> t Z
    .

  Fixpoint eq {h_or_z : hz} (ty1 ty2 : t h_or_z) : bool :=
    match ty1, ty2 with
    | Leaf c1, Leaf c2 => codeEq c1 c2
    | Cursor ty1, Cursor ty2 => eq ty1 ty2
    | @InternalH n1 c1 ty1, @InternalH n2 c2 ty2 =>
      match eq_nat_dec n1 n2 with
        | right _neqPrf => false
        | left eqPrf    =>
          codeEq c1 c2 && Vector.eqb _ eq ty1 ty2
        end
     | @InternalZ n1 c1 v1 (l1, f1), @InternalZ n2 c2 v2 (l2, f2) =>
       match eq_nat_dec n1 n2 with
       | right _neqPrf => false
       | left eqPrf    =>
         codeEq c1 c2 && Vector.eqb _ eq v1 v2 && Fin.eqb l1 l2 && eq f1 f2
       end
    | _, _ => false
    end.
End Typ.

- . , : , . :

Require Fin.
Require Vector.

Set Implicit Arguments.

Module Typ.
  Inductive arityCode : nat -> Type :=
    | Num   : arityCode 0
    | Hole  : arityCode 0
    | Arrow : arityCode 2
    | Sum   : arityCode 2
    .

  Inductive t : Type :=
    | Node : forall n, arityCode n -> Vector.t t n -> t.

  Inductive path : t -> Type :=
    | Here  : forall n (c : arityCode n) (v : Vector.t t n), path (Node c v)
    | There : forall n (c : arityCode n) (v : Vector.t t n) (i : Fin.t n),
                path (Vector.nth v i) -> path (Node c v).
End Typ.

path tree tree.

Coq , . , , t path . , , , , . , , ( , , Typ.eq).

+5

All Articles