You can also just convert everything from the start using pd.to_datetimethe desired datetime columns:
df = pd.DataFrame({
'date' : [
'2017-12-04',
'2017-12-05',
'2017-12-06',
'2017-12-07',
'2017-12-11'
],
'name' : ['AUSTIN LEWIS'] * 5,
'in_am' : [
'1900-01-01 07:03:11',
'1900-01-01 05:24:07',
'1900-01-01 11:58:32',
'1900-01-01 08:31:23',
'1900-01-01 06:55:21'
],
'out_am' : [
'1900-01-01 12:01:50',
'1900-01-01 12:08:21',
'',
'1900-01-01 12:49:51',
'1900-01-01 12:02:08'
],
'in_pm' : [
'1900-01-01 12:28:52',
'1900-01-01 12:35:12',
'',
'1900-01-01 13:18:34',
'1900-01-01 12:30:49'
],
'out_pm' : [
'1900-01-01 17:34:53',
'1900-01-01 16:15:17',
'1900-01-01 23:59:01',
'1900-01-01 18:10:35',
'1900-01-01 17:39:54'
],
'sick_time' : [''] * 5
})

df.dtypes

for col in df.columns.drop('name').tolist():
df[col] = pd.to_datetime(df[col])
df.dtypes

np.isnat(df.loc[:, df.dtypes == 'datetime64[ns]'])
