I am trying to match simulation results using dplyr and purrr. My results are saved as a list of data frames with the results of several different classification algorithms, and I'm trying to use purrr and dplyr to summarize these results.
I'm trying to calculate - the number of objects assigned to each cluster - the number of objects in the cluster that really belong to the cluster - the number of true positive results, false positives, false negatives and true negatives using 3 different algorithms (KEEP1 - KEEP3) - for 2 algorithms I have there is access to the probability of being in a cluster, so I can compare it with alternative alpha options - and therefore I can calculate true positive results, etc. using a different alpha choice.
I found this: https://github.com/tidyverse/dplyr/issues/3101 , which I successfully used in a single list item to get exactly what I wanted:
f <- function(.x, .y) {
sum(.x & .y)
}
actions <- list(
.vars = lst(
c('correct'),
c('KEEP1', 'KEEP2', 'KEEP3'),
c('pval1', 'pval2')
),
.funs = lst(
funs(Nk = length, N_correct = sum),
funs(
TP1 = f(., .y = correct),
FN1 = f(!(.), .y = correct),
TN1 = f(!(.), .y = !(correct)),
FP1 = f(., .y = !(correct))
),
funs(
TP2 = f((. < alpha0) , .y = correct),
FN2 = f(!(. < alpha0), .y = correct),
TN2 = f(!(. < alpha0), .y = !(correct)),
FP2 = f((. < alpha0), .y = !(correct))
)
)
)
reproducible_data <- replicate(2,
data_frame(
k = factor(rep(1:10, each = 20)), # group/category
correct = sample(x = c(TRUE, FALSE), 10 * 20, replace = TRUE, prob = c(.8, .2)),
pval1 = rbeta(10 * 20, 1, 10),
pval2 = rbeta(10 * 20, 1, 10),
KEEP1 = pval1 < 0.05,
KEEP2 = pval2 < 0.05,
KEEP3 = runif(10 * 20) > .2,
alpha0 = 0.05,
alpha = 0.05 / 20 # divided by no. of objects in each group (k)
),
simplify = FALSE)
df1 <- reproducible_data[[1]]
pmap(actions, ~df1 %>% group_by(k) %>% summarize_at(.x, .y)) %>%
reduce(inner_join,by = 'k')
, . "" ( , 0, , , ). dplyr/purrr, .
out_summary <- map(
reproducible_data,
pmap(actions, ~ as_tibble(.) %>% group_by("k") %>% summarize_at(.x, .y)) %>%
reduce(inner_join,by = 'k')
)
out_summary <- map(
reproducible_data,
pmap(actions, ~ as_tibble(.) %>% group_by("k") %>% summarize_at(.x, .y, alpha = alpha, alpha0 = alpha0, correct = correct)) %>%
reduce(inner_join,by = 'k')
)
'k' $group_by (k) $, $group_by ('k') $, , pmap. , dplyr purrr, .
- , $as_tibble() $ pmap. , , , . !