, , , , , . , , , . , : . , , , .
p[n] n- , v[n] , a[n] , j[n] - ( ). n- . , .
, p[0] p[n], v[0], t21. , n-1 n, , X, Y Z ( p[n]) , aMaxX, aMaxY aMaxZ jMaxX, jMaxY jMaxZ jerk.
, , p[i] i ∈ [1; n-1]. p[i] = p[i-1] + v[i], , v[i]. , v[i] = v[i-1] + a[i] a[i] = a[i-1] + j[i], , a[i] j[i].
a[0] a[n+1] .
, , , , . , aMax jMax, .
* [WIP] * , , , .
, - , P = p[n] - p[0]. R = [1; n] R* = [1; n+1].
- . , ∑{i∈R}(x[i]) x[i] i∈R.
Ⓐ ∑{i∈R}(v[i]) = P
Ⓑ ∑{i∈R}(a[i]) = v[n] - v[0]
Ⓧ ∑{i∈R*}(j[i]) = 0
Ⓧ , a[0] = a[n+1] = 0.
Ⓐ v[i] = v[i-1] + a[i], i∈R :
Ⓒ ∑{i∈R}((n+1-i)*a[i]) = P - n*v[0]
Ⓑ, Ⓒ a[i] = a[i-1] + j[i], i∈R :
Ⓨ ∑{i∈R}((n+1-i)*j[i]) = v[n] - v[0]
Ⓩ ∑{i∈R}(T[n+1-i]*j[i]) = P - n*v[0]
T[n] - n- , T[n] = n*(n+1)/2.
Ⓧ, Ⓨ Ⓩ .
n, n (1, 2?) . , max{i∈R}(abs(a[i])) > aMax max{i∈R}(abs(j[i])) > jMax, n .
* [WIP] * n, n. n .
j[i] i∈R*. j[i], j*[i], r[i] s[i] ,
j[i] = j*[i] + r[i]v[0] + s[i]v[n]
.
* [WIP] * j[i]
, n-1 (j[i], i∈R, , j[n+1] = -∑{i∈R}(j[i])) 3(n-1) . , Ⓧ, Ⓨ Ⓩ.
∑{i∈R*}(r[i]) = 0
∑{i∈R*}(s[i]) = 0
∑{i∈R}((n+1-i)*r[i]) = -1
∑{i∈R}((n+1-i)*s[i]) = 1
∑{i∈R}(T(n+1-i)*r[i]) = -n
∑{i∈R}(T(n+1-i)*s[i]) = 0
, Ⓧ, Ⓨ Ⓩ.
Ⓧ ∑{i∈R*}(j[i]) + j[n+1] = 0
Ⓨ ∑{i∈R}((n+1-i)*j[i]) = v[n] - v[0]
Ⓩ ∑{i∈R}(T[n+1-i]*j[i]) = P - n*v[0]
, , .
v[0] = v[n] = 0
, , j[i], i∈R* , . , .
, , , , 5 5. , 4- . , v[0] v[n] , a[0] = a[n+1] = 0 [0; n] P, 4. , dicrete , , , , .
, , , .

, n, p[0], p[n], v[0] v[n] ( ).
a = (-3(v[n]+v[0]) + 6(p[n]-p[0])) / n^5
b = (n(7v[n]+8v[0]) - 15(p[n]-p[0])) / n^4
c = (-n(4v[n]+6v[0]) + 10(p[n]-p[0])) / n^3
p[x] = ax^5 + bx^4 + cx^3 + v[0]x + p[0]
v[0] = v[n] = 0, j[i] = j*[i], i∈R*. , j*[i] . α, β γ , Ⓟ .
Ⓟ j*[i] = αi^2 + βi + γ, i∈R*
Ⓧ, Ⓨ Ⓩ .
α*∑{i∈R*}(i^2) + β*∑{i∈R*}(i) + c*∑{i∈R*}(1) = 0
α*∑{i∈R}((n+1-i)*i^2) + β*∑{i∈R}((n+1-i)*i) + c*∑{i∈R}(n+1-i) = 0
α*∑{i∈R}(T(n+1-i)*i^2) + β*∑{i∈R}(T(n+1-i)*i) + c*∑{i∈R}(T(n+1-i)) = P
α, β γ, Ⓟ j*[i], i∈R*. , j*[i] = j*[n+2-i], .
v[0] = v[n] = 1/n
v[0] = v[n] = 1/n, j[i] = 0, i∈R*. , Ⓠ .
Ⓠ r[i] + s[i] = -n*j[i], i∈R*
v[0] = 0, j[i∈L] = J, j[h] = 0, j[i∈U] = -J
L U R*, h - , n+1 . :
if n is odd:
L = [1; (n+1)/2]
U = [(n+3)/2; n+1]
if n is even:
L = [1; n/2]
h = n/2+1
U = [n/2+2; n]
p[0] p[n] abs(j[i]), i∈R*. Ⓩ .
∑{i∈R}(T[n+1-i]*j[i]) = P
∑{i∈L}(T[n+1-i])*j[1] + ∑{i∈U}(T[n+1-i])*j[n+1] = P
j[1] = P / [ ∑{i∈L}(T[n+1-i]) - ∑{i∈U}(T[n+1-i]) ]
j[1], j[i], i∈R*. v[n] Ⓨ.
v[0], v[n] P
αj*[i] + βr[i] + γs[i] = δ.
( , , ), , j*[i], r[i] s[i] i∈R*.
n j[i] v[0], v[n] P. , , n . , , , , n.