, CAS.
. Mathematica.
, y (x) = a x ^ 2 ( ).
:
A x^2 + B x y + CC y^2 + DD x + EE y + F == 0
where B^2-4 A C ==0 (so it a parabola)
:
p = {a -> 1, A -> 1, B -> 2, CC -> 1, DD -> 1, EE -> -1, F -> 1};
p1 = {ToRules@N@Reduce[
(A x^2 + B x y + CC y^2 + DD x + EE y +F /. {y -> a x^2 } /. p) == 0, x]}
{{x → -2.11769}, {x → -0.641445}, {x → 0.379567 - 0.76948 I}, {x → 0.379567+ 0.76948 I}}
Let me build it:
Show[{
Plot[a x^2 /. p, {x, -10, 10}, PlotRange -> {{-10, 10}, {-5, 5}}],
ContourPlot[(A x^2 + B x y + CC y^2 + DD x + EE y + F /. p) ==
0, {x, -10, 10}, {y, -10, 10}],
Graphics[{
PointSize[Large], Pink, Point[{x, x^2} /. p /. p1[[1]]],
PointSize[Large], Pink, Point[{x, x^2} /. p /. p1[[2]]]
}]}]

A general solution involves calculating the roots:
4 A F + 4 A DD x + (4 A^2 + 4 a A EE) x^2 + 4 a A B x^3 + a^2 B^2 x^4 == 0
What is done easily in any CAS.