I am interested in converting a numpy array to a sparse dictionary as quickly as possible. Let me clarify:
Given an array:
numpy.array([12,0,0,0,3,0,0,1])
I want to create a dictionary:
{0:12, 4:3, 7:1}
As you can see, we simply convert the type of the sequence to an explicit mapping of indices other than their values.
To make this a little more interesting, I suggest the following test harness for testing alternatives:
from timeit import Timer
if __name__ == "__main__":
s = "import numpy; from itertools import izip; from numpy import nonzero, flatnonzero; vector = numpy.random.poisson(0.1, size=10000);"
ms = [ "f = flatnonzero(vector); dict( zip( f, vector[f] ) )"
, "f = flatnonzero(vector); dict( izip( f, vector[f] ) )"
, "f = nonzero(vector); dict( izip( f[0], vector[f] ) )"
, "n = vector > 0; i = numpy.arange(len(vector))[n]; v = vector[n]; dict(izip(i,v))"
, "i = flatnonzero(vector); v = vector[vector > 0]; dict(izip(i,v))"
, "dict( zip( flatnonzero(vector), vector[flatnonzero(vector)] ) )"
, "dict( zip( flatnonzero(vector), vector[nonzero(vector)] ) )"
, "dict( (i, x) for i,x in enumerate(vector) if x > 0);"
]
for m in ms:
print " %.2fs" % Timer(m, s).timeit(1000), m
I use Poisson distribution to simulate the types of arrays that interest me.
Here are my results:
0.78s f = flatnonzero(vector); dict( zip( f, vector[f] ) )
0.73s f = flatnonzero(vector); dict( izip( f, vector[f] ) )
0.71s f = nonzero(vector); dict( izip( f[0], vector[f] ) )
0.67s n = vector > 0; i = numpy.arange(len(vector))[n]; v = vector[n]; dict(izip(i,v))
0.81s i = flatnonzero(vector); v = vector[vector > 0]; dict(izip(i,v))
1.01s dict( zip( flatnonzero(vector), vector[flatnonzero(vector)] ) )
1.03s dict( zip( flatnonzero(vector), vector[nonzero(vector)] ) )
4.90s dict( (i, x) for i,x in enumerate(vector) if x > 0);
As you can see, the fastest solution I have found is
n = vector > 0;
i = numpy.arange(len(vector))[n]
v = vector[n]
dict(izip(i,v))
Any faster way?
Edit: Step
i = numpy.arange(len(vector))[n]
, , , , 1/10 , . , .