How to find the best parameters for a genetic algorithm?

Some structures of the genetic algorithm, such as http://www.aforgenet.com/ , require many parameters, such as mutation speed, population size, etc.

Are there universal best numbers for such parameters? I believe that this depends on the problem (delay in the health function, delay in mutation, delay in recombination, rate of evolution, etc.). My first thought was to use GA to tune another GA.

Any better ideas?

+5
source share
6 answers

, , , , , , GA . , , , .

+5

, , .

, , , , , "" , , , .

- ( ): alt text
(: Scientific-computing.com)
:

:

:

  • : , , , .
  • : .

:

  • : , "" , .
  • : .

. . , GA .

+17

, , , . , , , .

, No Free Lunch Theor , , :

:

  • ( - GA)
  • ( - - GA)
    • Self Adaptive

, , , , . , , .

, "" :

:

:

, , , . !

+10

.

? - No Free Lunch. , , .

, , . . .

GA GA . GAGA? ...?

+7

. , . GA GA - GA ? , .

, , , .. , , , .

, - , .

+4

, . 0,7-0,9, - 0,1-0,3, . , . GA, .

GA GA, , , , GA? , , , , , - . . , GA , . GA. .

, .
, .

+2
source

All Articles