Indicating ThreadPoolExecutor Problem

Is there a way to create an Executor that will have at least 5 threads and a maximum of 20 threads and an unlimited queue for tasks (which means that no task will be rejected)

I tried a new one ThreadPoolExecutor(5, 20, 60L, TimeUnit.SECONDS, queue) with all the features that I thought about the queue:

new LinkedBlockingQueue() // never runs more than 5 threads
new LinkedBlockingQueue(1000000) // runs more than 5 threads, only when there is more than 1000000 tasks waiting
new ArrayBlockingQueue(1000000) // runs more than 5 threads, only when there is more than 1000000 tasks waiting
new SynchronousQueue() // no tasks can wait, after 20, they are rejected

and no one worked at will.

+5
source share
3 answers

Maybe something like this will work for you? I just whipped it, so please slip it to him. Basically, it implements a pool of overflow threads, which is used to supply the baseThreadPoolExecutor

I see two main abbreviations:

  • Future submit(). , , .
  • ThreadPoolExecutor . , . , StusMagicExecutor , . ( "" - .) , , StusMagicExecutor ?

Stu Magic:

public class StusMagicExecutor extends ThreadPoolExecutor {
    private BlockingQueue<Runnable> secondaryQueue = new LinkedBlockingQueue<Runnable>();  //capacity is Integer.MAX_VALUE.

    public StusMagicExecutor() {
        super(5, 20, 60L, SECONDS, new SynchronousQueue<Runnable>(true), new RejectionHandler());  
    }
    public void queueRejectedTask(Runnable task) {
        try {
            secondaryQueue.put(task);
        } catch (InterruptedException e) {
            // do something
        }
    }
    public Future submit(Runnable newTask) {
        //drain secondary queue as rejection handler populates it
        Collection<Runnable> tasks = new ArrayList<Runnable>();
        secondaryQueue.drainTo(tasks);

        tasks.add(newTask);

        for (Runnable task : tasks)
             super.submit(task);

        return null; //does not return a future!
    }
}

class RejectionHandler implements RejectedExecutionHandler {
    public void rejectedExecution(Runnable runnable, ThreadPoolExecutor executor) {
        ((StusMagicExecutor)executor).queueRejectedTask(runnable);
    }
}
+5

javadocs ThreadPoolExecutor , corePoolSize , . , core 5 max 20, .

, core max 20, , 20 . , "5 " , 20 ( , ).

+1

I think this problem is a class flaw and is very misleading given the combination of constructor parameters. Here is a solution taken from SwingWorker internal ThreadPoolExecutor that I made in a top-level class. It does not have a minimum, but at least uses an upper bound. The only thing I don’t know is that performance will hit from performing a lock.

public class BoundedThreadPoolExecutor extends ThreadPoolExecutor {
    private final ReentrantLock pauseLock = new ReentrantLock();
    private final Condition unpaused = pauseLock.newCondition();
    private boolean isPaused = false;
    private final ReentrantLock executeLock = new ReentrantLock();

    public BoundedThreadPoolExecutor(int maximumPoolSize,
            long keepAliveTime, TimeUnit unit, BlockingQueue<Runnable> workQueue) {
        super(0, maximumPoolSize, keepAliveTime, unit, workQueue);
    }

    public BoundedThreadPoolExecutor(int maximumPoolSize,
            long keepAliveTime, TimeUnit unit,
        BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory) {
        super(0, maximumPoolSize, keepAliveTime, unit, workQueue,
                threadFactory);
    }

    public BoundedThreadPoolExecutor(int maximumPoolSize,
            long keepAliveTime, TimeUnit unit,
            BlockingQueue<Runnable> workQueue, RejectedExecutionHandler handler) {
        super(0, maximumPoolSize, keepAliveTime, unit, workQueue,
                handler);
    }

    public BoundedThreadPoolExecutor(int maximumPoolSize,
            long keepAliveTime, TimeUnit unit,
            BlockingQueue<Runnable> workQueue, ThreadFactory threadFactory,
            RejectedExecutionHandler handler) {
        super(0, maximumPoolSize, keepAliveTime, unit, workQueue,
                threadFactory, handler);
    }

    @Override
    public void execute(Runnable command) {
        executeLock.lock();
        try {
            pauseLock.lock();
            try {
                isPaused = true;
            } finally {
                pauseLock.unlock();
            }
            setCorePoolSize(getMaximumPoolSize());
            super.execute(command);
            setCorePoolSize(0);
            pauseLock.lock();
            try {
                isPaused = false;
                unpaused.signalAll();
            } finally {
                pauseLock.unlock();
            }
        } finally {
            executeLock.unlock();
        }
    }

    @Override
    protected void afterExecute(Runnable r, Throwable t) {
        super.afterExecute(r, t);
        pauseLock.lock();
        try {
            while (isPaused) {
                unpaused.await();
            }
        } catch (InterruptedException ignore) {

        } finally {
            pauseLock.unlock();
        }
    }
}
+1
source

All Articles