Here I take upon myself this question, implemented by the predicate nonNegInt_oddPosSummands/2and auxiliary predicate list_n_sum/3:
:- use_module(library(clpfd)).
list_n_sum([],_,0).
list_n_sum([Z|Zs],N,Sum) :-
Z
Z
Z mod 2
Sum
Sum0
list_n_sum(Zs,N,Sum0).
nonNegInt_oddPosSummands(N,List) :-
length(_,N),
list_n_sum(List,N,N),
chain(List,
labeling([],List).
Now about some queries!
Firstly, “what lists can I put into?”:
?- nonNegInt_oddPosSummands(19,Zs).
Zs = [19] ;
Zs = [1, 3, 15] ;
Zs = [1, 5, 13] ;
Zs = [1, 7, 11] ;
Zs = [3, 5, 11] ;
Zs = [3, 7, 9] ;
false.
, , , . " N Zs, Zs 2?"
?- Zs=[_,_], nonNegInt_oddPosSummands(N,Zs).
N = 4, Zs = [1,3] ;
N = 6, Zs = [1,5] ;
N = 8, Zs = [1,7] ;
N = 8, Zs = [3,5] ;
N = 10, Zs = [1,9] ...
, . , , . .
?- nonNegInt_oddPosSummands(N,Zs).
N = 0, Zs = [] ;
N = 1, Zs = [1] ;
N = 3, Zs = [3] ;
N = 4, Zs = [1,3] ;
N = 5, Zs = [5] ;
N = 6, Zs = [1,5] ;
N = 7, Zs = [7] ;
N = 8, Zs = [1,7] ;
N = 8, Zs = [3,5] ;
N = 9, Zs = [9] ;
N = 9, Zs = [1,3,5] ;
N = 10, Zs = [1,9] ...