The main problem is the distribution of lines in a square or rectangle. You can do this geometrically or use whole arrays. I will try whole arrays here.
Let M be the matrix of your puzzle,
A B C D
E F G H
I J K L
M N O P
Let the word "EFGH" is an existing word, as well as "CGKO". Then create a matrix that will contain a membership counter in fighter words in each cell:
0 0 1 0
1 1 2 1
0 0 1 0
0 0 1 0
Apply the rule: the current cell value is equal to the sum of all neighbors (4-way) and is multiplied by the original cell value if the original value is 2 or higher.
0 0 1 0 1 2 2 2
1 1 2 1 -\ 1 3 8 2
0 0 1 0 -/ 1 2 3 2
0 0 1 0 0 1 1 1
And summarize all the values in the rows and columns:
1 2 2 2 = 7
1 3 8 2 = 14
1 2 3 2 = 8
0 1 1 1 = 3
| | | |
3 7 | 6
14
Then calculate the throughput of both result sets:
(7 + 14 + 8 + 3) / 4 = 32 / 4 = 8
(3 + 7 + 14 + 6) / 4 = 30 / 4 = 7.5
:
3 <-> 7.5 = 4.5 7 <-> 8 = 1
7 <-> 7.5 = 0.5 14 <-> 8 = 6
14 <-> 7.5 = 6.5 8 <-> 8 = 0
6 <-> 7.5 = 1.5 3 <-> 8 = 5
___avg ___avg
3.25 3
:
3 * 3.25 = 9.75
. , , , .
:
1 0 0 0 1 1 0 0 2
1 0 0 0 -\ 2 1 0 0 -\ 3 -\ C avg 2.5 -\ C avg-2-avg 0.5
1 0 0 0 -/ 2 1 0 0 -/ 3 -/ R avg 2.5 -/ R avg-2-avg 2.5
1 0 0 0 1 1 0 0 2 _____*
6 4 0 0 1.25 < score
: calc. .