Here is the situation, I am developing a binary search tree and in each node of the tree I intend to maintain my own height for further balancing the tree when forming the avl tree. I used to have an iterative approach to calculate the height of a node when balancing a tree, as shown below.
(The following code belongs to a class AVLTree<T>that is a child class BinarySearchTree<T>)
protected virtual int GetBalance(BinaryTreeNode<T> node)
{
if(node != null)
{
IEnumerable<BinaryTreeNode<T>> leftSubtree = null, righSubtree = null;
if (node.Left != null)
leftSubtree = node.Left.ToEnumerable(BinaryTreeTraversalType.InOrder);
if (node.Right != null)
righSubtree = node.Right.ToEnumerable(BinaryTreeTraversalType.InOrder);
var leftHeight = leftSubtree.IsNullOrEmpty() ? 0 : leftSubtree.Max(x => x.Depth) - node.Depth;
var righHeight = righSubtree.IsNullOrEmpty() ? 0 : righSubtree.Max(x => x.Depth) - node.Depth;
return righHeight - leftHeight;
}
return 0;
}
But it incurred a lot of overhead.
AVL tree performance in C #
So, I went to store the height value in each node during input in BinarySearchTree<T>. Now, during balancing, I can avoid this iteration, and I am gaining the desired performance in AVLTree<T>.
, , 1-50000 BinarySearchTree<T> ( ), StackoverflowException. , . , , AVLTree<T>?
public class BinaryTreeNode<T>
{
private BinaryTreeNode<T> _left, _right;
private int _height;
public T Value {get; set; }
public BinaryTreeNode<T> Parent;
public int Depth {get; set; }
public BinaryTreeNode()
{}
public BinaryTreeNode(T data)
{
Value = data;
}
public BinaryTreeNode<T> Left
{
get { return _left; }
set
{
_left = value;
if (_left != null)
{
_left.Depth = Depth + 1;
_left.Parent = this;
}
UpdateHeight();
}
}
public BinaryTreeNode<T> Right
{
get { return _right; }
set
{
_right = value;
if (_right != null)
{
_right.Depth = Depth + 1;
_right.Parent = this;
}
UpdateHeight();
}
}
public int Height
{
get { return _height; }
protected internal set
{
_height = value;
if (Parent != null) {
Parent.UpdateHeight();
}
}
}
private void UpdateHeight()
{
if (Left == null && Right == null) {
return;
}
if(Left != null && Right != null)
{
if (Left.Height > Right.Height)
Height = Left.Height + 1;
else
Height = Right.Height + 1;
}
else if(Left == null)
Height = Right.Height + 1;
else
Height = Left.Height + 1;
}
}
public class BinarySearchTree<T>
{
private readonly Comparer<T> _comparer = Comparer<T>.Default;
public BinarySearchTree()
{
}
public BinaryTreeNode<T> Root {get; set;}
public virtual void Add(T value)
{
var n = new BinaryTreeNode<T>(value);
int result;
BinaryTreeNode<T> current = Root, parent = null;
while (current != null)
{
result = _comparer.Compare(current.Value, value);
if (result == 0)
{
parent = current;
current = current.Left;
}
if (result > 0)
{
parent = current;
current = current.Left;
}
else if (result < 0)
{
parent = current;
current = current.Right;
}
}
if (parent == null)
Root = n;
else
{
result = _comparer.Compare(parent.Value, value);
if (result > 0)
parent.Left = n;
else
parent.Right = n;
}
}
}
StackoverflowException
if (Parent != null) {
Parent.UpdateHeight();
}
Height BinaryTreeNode<T>. , .
, , :)