First, you need to accept that it is more difficult to get named objects directly in a lowercase or inconsistent English text than in formal text, where capital letters are a great key. (This is also one of the reasons why Chinese NER is more complicated than English NER.) However, there are things you need to do to make CoreNLP work well enough with lowercase text - the default models are trained to work well with well-edited text.
, . , , ( ) , , . (, ), truecaser , , , NER ( , ner.model).
1: . , . .
2: truecaser. truecase, . , .
, , . .
: , , jar, .
. :
% cat lakers.txt
lonzo ball talked about kobe bryant after the lakers game.
, . !
% java edu.stanford.nlp.pipeline.StanfordCoreNLP -file lakers.txt -outputFormat conll -annotators tokenize,ssplit,pos,lemma,ner
% cat lakers.txt.conll
1 lonzo lonzo NN O _ _
2 ball ball NN O _ _
3 talked talk VBD O _ _
4 about about IN O _ _
5 kobe kobe NN O _ _
6 bryant bryant NN O _ _
7 after after IN O _ _
8 the the DT O _ _
9 lakers laker NNS O _ _
10 game game NN O _ _
11 . . . O _ _
, : , . .
% java edu.stanford.nlp.pipeline.StanfordCoreNLP -outputFormat conll -annotators tokenize,ssplit,pos,lemma,ner -file lakers.txt -pos.model edu/stanford/nlp/models/pos-tagger/english-caseless-left3words-distsim.tagger -ner.model edu/stanford/nlp/models/ner/english.all.3class.caseless.distsim.crf.ser.gz,edu/stanford/nlp/models/ner/english.muc.7class.caseless.distsim.crf.ser.gz,edu/stanford/nlp/models/ner/english.conll.4class.caseless.distsim.crf.ser.gz
% cat lakers.txt.conll
1 lonzo lonzo NNP PERSON _ _
2 ball ball NNP PERSON _ _
3 talked talk VBD O _ _
4 about about IN O _ _
5 kobe kobe NNP PERSON _ _
6 bryant bryant NNP PERSON _ _
7 after after IN O _ _
8 the the DT O _ _
9 lakers lakers NNPS O _ _
10 game game NN O _ _
11 . . . O _ _
truecasing POS NER:
% java edu.stanford.nlp.pipeline.StanfordCoreNLP -outputFormat conll -annotators tokenize,ssplit,truecase,pos,lemma,ner -file lakers.txt -truecase.overwriteText
% cat lakers.txt.conll
1 Lonzo Lonzo NNP PERSON _ _
2 ball ball NN O _ _
3 talked talk VBD O _ _
4 about about IN O _ _
5 Kobe Kobe NNP PERSON _ _
6 Bryant Bryant NNP PERSON _ _
7 after after IN O _ _
8 the the DT O _ _
9 Lakers Lakers NNPS ORGANIZATION _ _
10 game game NN O _ _
11 . . . O _ _
Lakers , , , . , , , .