How to improve the algorithm of my recursive Traffic Jam solver?

Theres a cute little Android game called Traffic Jam

I wrote a recursive solver:

import copy,sys
sys.setrecursionlimit(10000)


def lookup_car(car_string,ingrid):
  car=[]
  i=0
  for row in ingrid:
    j=0 
    for cell in row:
      if cell == car_string:
        car.append([i,j])
      j+=1
    i+=1
  return car

#True if up/down False if side to side
def isDirectionUp(car):
  init_row=car[0][0]
  for node in car:
    if node[0] != init_row:
      return True
  return False   

def space_up(car,grid):
  top_node=car[0]
  m_space_up = (top_node[0]-1,top_node[1])
  if top_node[0] == 0:
    return -1
  elif grid[m_space_up[0]][m_space_up[1]] != " ":
    return -1
  else:
    return m_space_up

def space_down(car,grid):
  bottom_node = car[-1]
  m_space_down = (bottom_node[0]+1,bottom_node[1])
  if bottom_node[0] == 5 :
    return -1
  elif grid[m_space_down[0]][m_space_down[1]] != " ":
    return -1
  else:
    return m_space_down

def space_left(car,grid):
  left_node = car[0]
  m_space_left = (left_node[0],left_node[1]-1)
  if left_node[1] == 0 :
    return -1
  elif grid[m_space_left[0]][m_space_left[1]] != " ":
    return -1
  else:
    return m_space_left

def space_right(car,grid):
  right_node = car[-1]
  m_space_right = (right_node[0],right_node[1]+1)
  if right_node[1] == 5 :
    return -1
  elif grid[m_space_right[0]][m_space_right[1]] != " ":
    return -1
  else:
    return m_space_right

def list_moves(car,grid):
  ret =[]
  if isDirectionUp(car):
    up = space_up(car,grid) 
    if up != -1:
      ret.append(("UP",up))
    down = space_down(car,grid)
    if down != -1:
      ret.append(("DOWN",down))
  else:
    left = space_left(car,grid)
    if left != -1:
      ret.append(("LEFT",left))
    right = space_right(car,grid)
    if right != -1:
      ret.append(("RIGHT",right))
  return ret

def move_car(car_string,move,ingrid):
  grid = copy.deepcopy(ingrid)
  car = lookup_car(car_string,grid)
  move_to = move[1]
  front = car[0]
  back = car[-1]
  if(move[0] == "UP" or move[0] == "LEFT"):
    grid[back[0]][back[1]] = " "
    grid[move_to[0]][move_to[1]] = car_string 
  elif(move[0] == "DOWN" or move[0] == "RIGHT"):
    grid[front[0]][front[1]] = " "
    grid[move_to[0]][move_to[1]] = car_string 
  return grid

def is_solution(grid):       
  car = lookup_car("z",grid)
  if(car[-1] == [2,5]):
    return True
  elif space_right(car,grid) == -1:
    return False
  else:
    solgrid = move_car("z",("RIGHT",space_right(car,grid)),grid)
    return is_solution(solgrid)

def print_grid(grid):
  for row in grid:
    print ''.join(row)

def solve(grid,solution,depth):
  global stop
  global state
  if grid in state:
    return
  else:
    state.append(grid)
  if stop:
    return
  if is_solution(grid):
    print_grid(grid)
    print len(solution)
  else:
    for each in "abcdefzhijklm":
      car = lookup_car(each,grid)
      moves = list_moves(car,grid)
      for move in moves:
        solution.append((each,move))
        moved_grid = move_car(each,move,grid)
        solve(moved_grid,solution,depth)

stop=False
state=[]
recdepth=0

#grid file using a-w  and x means free space, and ' ' means yellow car
grid=[list(x) for x in file(sys.argv[1]).read().split('\n')[0:-1]]
solve(grid,[],0)

The WHERE table is in the file:

abccdd
abeef 
azzhfi
jjjhfi
  kll
  kmm

But finding a solution requires more than 8000 moves, and it is not possible to find a simple solution for 30 steps. What is wrong with the algorithm?

+5
source share
2 answers

r, n (1-r ^ n)/(1-r). 30- , , r = 2, 2 ^ 30-1 ~ ~ 1 000 000 000 . , , , 2, 30 !

, , () ( ) () , (, , ).

, .

+1

, , ( ) . , " " , , , A * Search .

, , , , . .

, !

+1

All Articles