None of the three cases in the main theorem apply to
T(n)=2 T(n/2) + n log(log n)
(With an arbitrary base, this does not really matter)
1: f (n) = n log (log n) "", n log2 2= n 1
2: f (n) n log k (n)
3: f (n) n 1 + e
U(n)=2 U(n/2) + n log n
L(n)=2 L(n/2) + n
, : U(n) >= T(n) L(n) <= T(n). , U , L - T.
U (n),
2: f (n) = n log n = Θ (n 1 log 1 n), , U (n) = Θ (n log 2 n)
L (n),
2: f (n) = n = Θ (n 1 log 0 n), , L (n) = Θ (n log n)
L(n)<=T(n)<=U(n) , T (n) = O (n log 2 n) T (n) = Ω (n log n)
, O (log 2 n) = O ((log n)/log 2) = O ((log n) * c) = O (log n).