r (R) , F, A R x- > Y
if A belongs to X and A is extraneous then
(F - {X->Y}) U {(X-A) -> Y} is equivalent to F
if A belongs to Y and A is extraneous then
F is equivalent to (F - {X->Y}) U {X -> (Y-A)}
, A X
1. Find (X-A)+ under F
2. If Y is a subset of (X-A)+ under F then A is extraneous
, , F. , A , FD.
, A Y
1. Find F' = (F - {X->Y}) U {X -> (Y-A)}
2. Find X+ under F'
3. X + F ' A, A Y
A , FD, A . , FD {X → (Y-A)} FS F X FD. , X + , , A Y A, F ', F' , F.
, F ' A, . , (X-A) X , , (X-A) + F (X-A) U Y . , F '= (F - {X- > Y}) U {(XA) → Y} (XA) F', (XA) , FD F ' (XA) U Y. , A X, F'. , .
, A Y, F ' A, Y, , X + F', XU (YA) , X F, XUY, , X , , - .
, FD . FD , FD . .
, FD , . FD, .
F = {ABC -> D, CD -> B, BCF -> D, CDF -> BE, BCDF -> E}
- CDF->BE, B , E . , :
F1 = {ABC -> D, CD -> B, BCF -> D, CDF -> B, BCDF -> E}
F2 = {ABC -> D, CD -> B, BCF -> D, CDF -> E, BCDF -> E} ( CDF- > E , BCDF- > E CDF- > E)
/ . . , . .
AS - , / :
Fc = {AC->D, CD->B, CF->DE}
, .
EDIT1:
r(A, B, C)
FDs
F = {A->BC, B->AC, C->AB}
, F, B A->BC. , 'C' A->BC F. , , B A->BC, B, A->C, : F1 = {A->C, B->AC, C->AB} C A->C F1. FD, , .
, 4 , .
A->BC
B->AC
C->AB
|
+-----------------+-----------------+
| |
A->C A->B
B->AC B->AC
C->AB C->AB
| |
+--------+--------+ +--------+--------+
| | | |
A->C +---+---+ +---+---+ A->B
B->A | A->C | | A->B | B->AC
C->AB | B->C | | B->AC | C->A
| | C->AB | | C->B | |
+ +-------+ +-------+ +---+---+
| | Fc2 | | Fc3 | | A->B |
+---+---+ +-------+ +-------+ | B->C |
| A->C | | C->A |
| B->A | +-------+
| C->B | | Fc4 |
+-------+ +-------+
| Fc1 |
+-------+
, , FD, . , FD A->BC, B C A->BC F, B FD A->C ( ), C A->BC FD, A->B ( ).