Mathematica: Help me understand the 3D Mathematica coordinate system

I gave up trying to understand the configuration of the Mathematica 3D axes.

When I make a 3D graph and mark 3 axes to identify which axes are there, and then make points on these axes, the points appear on different axes than what I expect them to show when using the Point command, which accepts { x, y, z}.

Here is an example

g=Graphics3D[
  {
   {PointSize[0],Point[{0,0,0}]}
  },
  AxesOrigin->{0,0,0}, PlotRange->{{-3,3},{-3,3},{-3,3}},
  Axes->True, AxesLabel->{"X","Y","Z"},
  LabelStyle->Directive[Bold,Red,16],
  PreserveImageOptions->False, Ticks->None,Boxed->False]

Above results in

enter image description here

So now I have added a point at the end of the x axis and at the end of the y axis and at the end of the z axis. I make each point a different color to help identify them on the plot.

 g=Graphics3D[
 {
  {Red,PointSize[.03],Point[{3,0,0}]},
  {Black,PointSize[.03],Point[{0,3,0}]},
  {Blue,PointSize[.03],Point[{0,0,3}]}
 },
  AxesOrigin->{0,0,0},PlotRange->{{-3,3},{-3,3},{-3,3}},
  Axes->True,AxesLabel->{"X","Y","Z"},
  LabelStyle->Directive[Bold,Red,16],PreserveImageOptions->False,
  Ticks->None,Boxed->False]

The result is the following:

enter image description here

, , , x, Z. , Y, X, , Z, Y- .

, ? , ?

, . , -, , . 3D- Mathematica.

EDIT: Ticks , , , :

 g=Graphics3D[
 {
   Cuboid[{-.1,-.1,-.1},{.1,.1,.1}],
   {Red,PointSize[.03],Point[{2,0,0}]},
   {Black,PointSize[.03],Point[{0,2,0}]},
   {Blue,PointSize[.03],Point[{0,0,2}]}
  },
   AxesOrigin->{0,0,0},
   PlotRange->{{-2,2},{-2,2},{-2,2}},
   Axes->True,
   AxesLabel->{"X","Y","Z"},
   LabelStyle->Directive[Bold,Red,16],
   PreserveImageOptions->False,
   Ticks->True, TicksStyle->Directive[Black,8],
   Boxed->False
   ]

: enter image description here

EDIT: , AxesLabels, .

m=3;
labels={Text[Style["X",16],{1.2 m,0,0}],Text[Style["Y",16],{0,1.2 m,0}],
       Text[Style["Z",16],{0,0,1.2 m}]};

 g=Graphics3D[
 {
   {Red,PointSize[.03],Point[{m,0,0}]},
   {Black,PointSize[.03],Point[{0,m,0}]},
   {Blue,PointSize[.03],Point[{0,0,m}]},
   labels
 },
  AxesOrigin->{0,0,0},
  PlotRange->{{-m,m},{-m,m},{-m,m}},
  Axes->True,
  AxesLabel->None,
  LabelStyle->Directive[Bold,Red,16],
  PreserveImageOptions->False,
  Ticks->True, TicksStyle->Directive[Black,8],
  Boxed->False
  ]

enter image description here

+5
2

, . . , Mathematica .

 g=Graphics3D[
{
 {Red,Thick, Line[{{0, 0, 0}, {1, 0, 0}}]},
 {Black,Thick, Line[{{0, 0, 0}, {0, 2, 0}}]},
 {Blue,Thick, Line[{{0, 0, 0}, {0, 0, 3}}]}
},
 AxesOrigin->{0,0,0},
 Axes->True,AxesLabel->{"X","Y","Z"},
 LabelStyle->Directive[Bold,Red,16],PreserveImageOptions->False,
 Ticks->None,Boxed->False]

enter image description here

+3

, AxesLabel 3D- . :

[enter image description here]

IMHO WRI (/ ..).

+5

All Articles