When using, GroebnerBasisI came across some strange behavior. In the m1below, I used the Greek letter as my variable, and in m2I used the Latin letter. Both of them have no rules associated with them. Why do I get completely different answers depending on which variable I choose?
Picture:

The code to be copied:
Clear["Global`*"]
g = Module[{x},
x /. Solve[
z - x (1 - b -
b x ( (a (3 - 2 a (1 + x)))/(1 - 3 a x + 2 a^2 x^2))) == 0,
x]][[3]];
m1 = First@GroebnerBasis[\[Kappa] - g, z]
m2 = First@GroebnerBasis[k - g, z]
EDIT:
, GroebnerBasis , , - . , -, , , , , m1 . , . :
x = (-b+Sqrt[b^2-4 a c])/2a;
p = First@GroebnerBasis[k - x,{a,b,c}]; (*get relation or cover for Riemann surface*)
q = First@GroebnerBasis[{D[p,k] == 0, p == 0},{a,b,c},k,
MonomialOrder -> EliminationOrder];
Solve[q==0, b] (*get condition on b for double root or branch point*)
{{b -> -2 Sqrt[a] Sqrt[c]}, {b -> 2 Sqrt[a] Sqrt[c]}}
. , , GroebnerBasis, , .
< > P.S. , GroebnerBasis , :)