How is parallel factorization?

The following code fragment calculates simple coefficients of a given number:

public static LinkedList<Long> getPrimeFactors(Long number) {
    LinkedList<Long> primeFactors = new LinkedList<Long>();

    for (Long factor = Long.valueOf(2); factor <= number / factor; factor++) {
        if (number % factor == 0) {
            primeFactors.add(factor);
            while (number % factor == 0) {                  
                number /= factor;
            }
        }           
    }

    if (number > 1) {
        primeFactors.add(number);
    }

    return primeFactors;
}

It takes 140937ms to calculate simple coefficients 9223372036854775783 (this is the final touch less Long.MAX_VALUE). Is there a way to implement this factorization on concurrency, i.e. using ExecutorService?

Edit:

public static void getPrimeFactors(Long number) {
    LinkedList<Long> primeFactors = new LinkedList<Long>();

    if (number % 2 == 0) {
        primeFactors.add(2L);

        while (number % 2 == 0) {
            number /= 2;
        }
    }

    long limit = (long) Math.sqrt(number) + 1;

    ExecutorService service = Executors.newFixedThreadPool(2);
    LinkedList<Future<LinkedList<Long>>> futures = new LinkedList<Future<LinkedList<Long>>>();
    futures.add(service.submit(new PrimeFactor(3, limit / 2, number)));
    futures.add(service.submit(new PrimeFactor(1 + limit / 2, limit, number)));

    for (Future<LinkedList<Long>> future : futures) {
        try {
            primeFactors.addAll(future.get());
        } catch (InterruptedException e) {
            e.printStackTrace();
        } catch (ExecutionException e) {
            e.printStackTrace();
        }
    }
    service.shutdown();

    if(number>1) {
        primeFactors.add(number);           
    }

    System.out.println(primeFactors);
}

private static class PrimeFactor implements Callable<LinkedList<Long>> {
    private long lowerLimit;
    private long upperLimit;
    private Long number;

    public PrimeFactor(long lowerLimit, long upperLimit, Long number) {
        this.lowerLimit = lowerLimit;
        this.upperLimit = upperLimit;
        this.number = number;
    }

    public LinkedList<Long> call() throws Exception {
        LinkedList<Long> primeFactors = new LinkedList<Long>();
        for (long i = lowerLimit; i < upperLimit; i += 2) {
            if (number % i == 0) {
                primeFactors.add(i);
                while (number % 2 == 0) {
                    number /= i;
                }
            }
        }
        return primeFactors;
    }

}

2nd Edit:

public static LinkedList<Long> getPrimeFactorsByFastGeneralMethod(long number) {
    LinkedList<Long> primeFactors = new LinkedList<Long>();

    if (number % 2 == 0) {
        primeFactors.add(2L);

        while (number % 2 == 0) {
            number /= 2;
        }
    }

    long limit = (long) Math.sqrt(number);

    for (long factor = 3; factor <= limit; factor += 2) {
        if (number % factor == 0) {
            primeFactors.add(factor);
            while (number % factor == 0) {
                number /= factor;
            }
        }
    }

    if (number > 1) {
        primeFactors.add(number);
    }

    return primeFactors;
}

Now a piece of code:

    LinkedList<Long> primeFactors = Factorization.getPrimeFactorsByConcurrentGeneralMethod(600851475143L);
    System.out.println("Result: " + primeFactors.get(primeFactors.size() - 1));

    primeFactors = Factorization.getPrimeFactorsByFastGeneralMethod(600851475143L);
    System.out.println("Result: " + primeFactors.get(primeFactors.size() - 1));

gives the result:

Result: 600851475143
Result: 6857

Note. Class name Factorizationand I changed the method name getPrimeFactorstogetPrimeFactorsByConcurrentGeneralMethod

+5
source share
3 answers

, . 2, , 2 , 3 2. / ( JIT , ) Sqrt (N) - , p > sqrt (N);)

, , 3 Sqrt (N), . 3-Sqrt (N) K , K - ( , ) . .

, BigIntegers, , - - , , , .

PS: , 2 sqrt (n).

PPS: , , NP, , concurrency.

+6

, , , . - .

(ECM) Prime Factorization. . - . , ,

+1

:

  • , .
  • Create a shortcut for a β€œsimple” case, for example. d. you iterate over each number between 2 and the number / 2. This is not necessary, since 2 is the only even simple factor. You save half the number of iterations with this shortcut at best.
  • You do not need to calculate simple coefficients number, sqrt(number)enough.
  • There are More Effective Ways to Integer Factorization

    public static List<Long> getPrimeFactors(long number) {
        List<Long> primeFactors = new ArrayList<Long>();
    
        // Only process natural numbers
        if(number < 1l) {
            return primeFactors;
        }
    
        // The only prime factor of 1 is 1
        if(number == 1l) {
            primeFactors.add(1l);
            return primeFactors;
        }
    
        // Even have the prime factor 2
        if(number % 2l == 0l) {
            primeFactors.add(2l);
    
            while(number % 2l == 0l) {
                number /= 2l;
            }
        }
    
        // Iterate from 3 to sqrt(number) to calculate the remaining prime factors
        for (long factor = 3l; factor < Math.sqrt(number); factor+=2l) {
            if (number % factor == 0) {
                primeFactors.add(factor);
                while (number % factor == 0) {                  
                    number /= factor;
                }
            }           
        }
    
        if (number > 1) {
            primeFactors.add(number);
        }
    
        return primeFactors;
    }
    
0
source

All Articles