SPOJ Flibacca Problem Exceeds Time Limit

I'm trying to solve this problem in Haskell, but exceeding the time limit. I applied all my Haskell and math skills to optimize this, but all in vain. Can someone please suggest me how to optimize this code further. The sequence F_3 + F_7 + F_11 .... + F_ (4n + 3) = F_2n * F_ (2n + 1). I used the O (log n) method to calculate the Fibonacci numbers.

import Data.List
import Data.Maybe
import qualified Data.ByteString.Lazy.Char8 as BS

matmul :: [Integer] -> [Integer] -> Integer -> [Integer]
matmul [a,b,c] [d,e,f] m = [x,y,z] where
    y = (a*e + b*f) `mod` m
    z = (b*e + c*f) `mod` m
    x = y + z


powM ::[Integer] -> Integer -> Integer -> [Integer]
powM a n m | n == 1 = a 
   | n == 2 = matmul a a m
   | even n = powM ( matmul a a m ) ( div n 2 ) m 
   | otherwise = matmul a ( powM ( matmul a a m ) ( div n 2 ) m ) m 

readInt :: BS.ByteString -> Integer
readInt  = fst.fromJust.BS.readInteger 

solve::Integer -> BS.ByteString
solve n = BS.pack.show $ mod ( c*d ) 1000000007 where 
 [c,d,_] = powM [1,1,0] ( 2*n ) 1000000007
--([_,a,_]:_) = powM [[1,2,1],[0,5,3],[0,3,2]] n 1000000007
-- f_3+f_7+f_11+f_15 = f_2n*f_(2n+1)

main = BS.interact $ BS.unlines. map ( solve.readInt ) . tail . BS.lines 
+5
source share
1 answer

, , . , , ! , .

import Data.List
import Data.Maybe
import Control.Monad
import qualified Data.ByteString.Lazy.Char8 as B
import qualified Data.ByteString.Char8 as BC
import qualified Text.Show.ByteString as BS

matmul :: [Integer] -> [Integer] -> Integer -> [Integer]
matmul [a,b,c] [d,e,f] m = [x,y,z] where
    y = (a*e + b*f) `mod` m
    z = (b*e + c*f) `mod` m
    x = y + z

powM :: [Integer] -> Integer -> Integer -> [Integer]
powM a n m | n == 1 = a 
   | n == 2 = matmul a a m
   | even n = powM ( matmul a a m ) ( div n 2 ) m 
   | otherwise = matmul a ( powM ( matmul a a m ) ( div n 2 ) m ) m 

solve :: Integer -> Integer
solve n = mod ( c*d ) 1000000007 
  where 
  [c,d,_] = powM [1,1,0] ( 2*n ) 1000000007

readInteger :: B.ByteString -> Integer
readInteger  = fst . fromJust . B.readInteger

readInt :: B.ByteString -> Int
readInt = fst . fromJust . B.readInt

get :: IO B.ByteString
get = liftM (B.fromChunks . (:[])) BC.getLine

main :: IO ()
main = do
  n <- liftM readInt get
  replicateM_ n ( liftM readInteger get >>= B.putStrLn . BS.show . solve )
+1

All Articles