Prediction / implication of missing Poisson GLM regression values ​​in R?

I am trying to learn how to nest missing values ​​in a data set. My dataset contains the number of calculations (Unnatural, Natural and Total) for the year (2001-2009), month (1-12), gender (M / F) and age group (4 groups).

One of the imputation methods that I am studying is (in voisson) regression imputation.

Say my data looks like this:

    Year Month Gender AgeGroup Unnatural Natural Total
569 2006     5   Male     15up       278     820  1098
570 2006     6   Male     15up       273     851  1124
571 2006     7   Male     15up       304     933  1237
572 2006     8   Male     15up       296    1064  1360
573 2006     9   Male     15up       298     899  1197
574 2006    10   Male     15up       271     819  1090
575 2006    11   Male     15up       251     764  1015
576 2006    12   Male     15up       345     792  1137
577 2007     1 Female        0        NA      NA    NA
578 2007     2 Female        0        NA      NA    NA
579 2007     3 Female        0        NA      NA    NA
580 2007     4 Female        0        NA      NA    NA
581 2007     5 Female        0        NA      NA    NA
...

After the main GLM regression, 96 cases were deleted due to their absence.

// R, GLM "" (.. ) Total ( - Excel )? , , . , /?

Call:
glm(formula = Total ~ Year + Month + Gender + AgeGroup, family = poisson)

Deviance Residuals: 
      Min         1Q     Median         3Q        Max  
-13.85467   -1.13541   -0.04279    1.07133   10.33728  

Coefficients:
                Estimate Std. Error z value Pr(>|z|)    
(Intercept)   13.3433865  1.7541626   7.607 2.81e-14 ***
Year          -0.0047630  0.0008750  -5.443 5.23e-08 ***
Month          0.0134598  0.0006671  20.178  < 2e-16 ***
GenderMale     0.2265806  0.0046320  48.916  < 2e-16 ***
AgeGroup01-4  -1.4608048  0.0224708 -65.009  < 2e-16 ***
AgeGroup05-14 -1.7247276  0.0250743 -68.785  < 2e-16 ***
AgeGroup15up   2.8062812  0.0100424 279.444  < 2e-16 ***
---
Signif. codes:  0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1 

(Dispersion parameter for poisson family taken to be 1)

    Null deviance: 403283.7  on 767  degrees of freedom
Residual deviance:   4588.5  on 761  degrees of freedom
  (96 observations deleted due to missingness)
AIC: 8986.8

Number of Fisher Scoring iterations: 4
+5
2

-, . , . , ( - ). , .

-, , , predict, glm. . ?predict.glm. (, ) .

+6

mice , , . , MCMC.

, - , , , .

0

All Articles