Yes. Use set.seedto set the seed for a random value before clustering.
Using the example in kmeans:
set.seed(1)
x <- rbind(matrix(rnorm(100, sd = 0.3), ncol = 2),
matrix(rnorm(100, mean = 1, sd = 0.3), ncol = 2))
colnames(x) <- c("x", "y")
set.seed(2)
XX <- kmeans(x, 2)
set.seed(2)
YY <- kmeans(x, 2)
Equality Check:
identical(XX, YY)
[1] TRUE
source
share