, 10 * 10 . ShuffleSplit, , 10 . 10 , 100 10% , , :
>>> ss = ShuffleSplit(X.shape[0], n_iterations=100, test_fraction=0.1,
... random_state=42)
10 StratifiedKFold k = 10, ( 100 90% - /10% ):
>>> from sklearn.utils import shuffle
>>> from sklearn.cross_validation import StratifiedKFold, cross_val_score
>>> for i in range(10):
... X, y = shuffle(X_orig, y_orig, random_state=i)
... skf = StratifiedKFold(y, 10)
... print cross_val_score(clf, X, y, cv=skf)