I currently have a great expression with many form members
Abs[-2 b + 2 d1 m + l Tan[\[Theta]]]
I know from the geometry of my problem that
-2 b + 2 d1 m + l Tan[\[Theta]] > 0
However, when I try to simplify my expression,
Simplify[Abs[-2 b + 2 d1 m + l Tan[\[Theta]]], -2 b + 2 d1 m + l Tan[\[Theta]] > 0]
I'll just be back
Abs[-2 b + 2 d1 m + l Tan[\[Theta]]]
How can I get Mathematica to simplify an unnecessary absolute value?
EDIT 1
The full expression I'm trying to simplify
-(1/(2 (m - Tan[\[Theta]])))
Sqrt[1 + m^2] (B2 Sqrt[(-2 b + 2 d1 m + l Tan[\[Theta]])^2] +
B4 Sqrt[(-2 b + 2 d2 m + l Tan[\[Theta]])^2] +
B5 Sqrt[(2 b + 2 d3 m + l Tan[\[Theta]])^2] +
B7 Sqrt[(2 b + 2 d4 m + l Tan[\[Theta]])^2] +
B1 Sqrt[(2 b - 2 (d1 + l) m + l Tan[\[Theta]])^2] +
B3 Sqrt[(2 b - 2 (d2 + l) m + l Tan[\[Theta]])^2] +
B6 Sqrt[(-2 (b + (d3 + l) m) + l Tan[\[Theta]])^2] +
B8 Sqrt[(-2 (b + (d4 + l) m) + l Tan[\[Theta]])^2])
The terms squared under each of the radicals are known to be a positive real number.
source
share