http://github.com/dwelch67/msp430_samples
the samples show time periods using a timer, count the timer before and after, and subtract the difference, i.e. the execution time.
EDIT:
, , ,
, , , , . , , .
;This version is written for naken430asm.
;http://www.mikekohn.net/micro/naken430asm_msp430_assembler.php
;naken430asm -o filename.hex filename.s
;mspdebug takes hex files as well as elfs.
WDTCTL equ 0x0120
CALBC1_1MHZ equ 0x10FF
CALDCO_1MHZ equ 0x10FE
DCOCTL equ 0x56
BCSCTL1 equ 0x57
BCSCTL2 equ 0x58
TACTL equ 0x0160
TAR equ 0x0170
TACCR0 equ 0x0172
TACCTL0 equ 0x0162
P1OUT equ 0x0021
P1DIR equ 0x0022
org 0xFC00
reset:
mov #0x0280,r1
mov #0x5A80,&WDTCTL ; 0x5A00|WDTHOLD
; use calibrated clock
clr.b &DCOCTL
mov.b &CALBC1_1MHZ,&BCSCTL1
mov.b &CALDCO_1MHZ,&DCOCTL
; make p1.0 and p1.6 outputs
bis.b #0x41,&P1DIR
bic.b #0x41,&P1OUT
bis.b #0x40,&P1OUT
; 1MHz is 1000000 clocks per second
; 1000000 = 0xF4240
; The timers are 16 bit
; Using a divide by 8 in BCSCTL2 gives
; 125000 (0x1E848) clocks in a second
; Using a divide by 8 in the timer gives
; 15625 (0x3D09) timer ticks per second.
; If both divisors are by 8, and we set
; TACCR0 to 0x3D08 and set for count up mode
; then, theory, we can measure seconds.
bis.b #0x06,&BCSCTL2
mov #0x02C4,&TACTL
mov #0x3D08,&TACCR0
mov #0x02D0,&TACTL
;mov #0x02D0,&TACTL ; use this instead to blink faster
loop:
xor.b #0x41,&P1OUT
loop0:
bit.w #0x0001,&TACCTL0
jz loop0
bic.w #0x0001,&TACCTL0
jmp loop
hang:
jmp hang
org 0xFFE0
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw hang
dw reset
(rs232) , , , , ( , 0xF000 0x3000, , , 0xF000, 0xF100, ). , , , , .
, , , , , ( - , ( ) ).
#define WDTCTL (*((volatile unsigned short *)0x0120))
#define CALBC1_1MHZ (*((volatile unsigned char *)0x10FF))
#define CALDCO_1MHZ (*((volatile unsigned char *)0x10FE))
#define CALBC1_8MHZ (*((volatile unsigned char *)0x10FD))
#define CALDCO_8MHZ (*((volatile unsigned char *)0x10FC))
#define CALBC1_12MHZ (*((volatile unsigned char *)0x10FB))
#define CALDCO_12MHZ (*((volatile unsigned char *)0x10FA))
#define CALBC1_16MHZ (*((volatile unsigned char *)0x10F9))
#define CALDCO_16MHZ (*((volatile unsigned char *)0x10F8))
#define DCOCTL (*((volatile unsigned char *)0x56))
#define BCSCTL1 (*((volatile unsigned char *)0x57))
#define BCSCTL2 (*((volatile unsigned char *)0x58))
#define TACTL (*((volatile unsigned short *)0x0160))
#define TAR (*((volatile unsigned short *)0x0170))
#define TACCR0 (*((volatile unsigned short *)0x0172))
#define TACCTL0 (*((volatile unsigned short *)0x0162))
#define P1IN (*((volatile unsigned char *)0x0020))
#define P1OUT (*((volatile unsigned char *)0x0021))
#define P1DIR (*((volatile unsigned char *)0x0022))
#define TACCR0_VALUE 138
void uart_putc ( unsigned short c )
{
unsigned short sa;
unsigned short sb;
unsigned short then,now;
sa=c<<1;
sa|=1<<9;
sb=10;
then=TAR;
while(sb--)
{
if(sa&1) P1OUT|=1; else P1OUT&=(~1);
sa>>=1;
while(1)
{
now=TAR-then;
if(now>TACCR0_VALUE) break;
}
then+=TACCR0_VALUE;
}
}
void hexstring ( unsigned short d, unsigned short cr )
{
unsigned short rb;
unsigned short rc;
rb=16;
while(1)
{
rb-=4;
rc=(d>>rb)&0xF;
if(rc>9) rc+=0x37; else rc+=0x30;
uart_putc(rc);
if(rb==0) break;
}
if(cr)
{
uart_putc(0x0D);
uart_putc(0x0A);
}
else
{
uart_putc(0x20);
}
}
void notmain ( void )
{
unsigned short sb;
unsigned short then;
unsigned short bitin;
WDTCTL = 0x5A80;
DCOCTL = 0x00;
BCSCTL1 = CALBC1_16MHZ;
DCOCTL = CALDCO_16MHZ;
P1DIR |= 0x01;
P1OUT |= 0x01;
P1DIR &= ~0x02;
BCSCTL2&=~0x06;
TACTL = 0x0204;
TACTL = 0x0220;
hexstring(0x1234,1);
hexstring(0x5678,1);
while(1)
{
bitin=0;
while(1) if((P1IN&2)==0) break;
then=TAR;
while(1)
{
if((TAR-then)>=(TACCR0_VALUE>>1)) break;
}
if(P1IN&2)
{
bitin>>=1;
bitin|=1<<9;
}
else
{
bitin>>=1;
}
then+=(TACCR0_VALUE>>1);
for(sb=0;sb<9;sb++)
{
while(1)
{
if((TAR-then)>=TACCR0_VALUE) break;
}
if(P1IN&2)
{
bitin>>=1;
bitin|=1<<9;
}
else
{
bitin>>=1;
}
then+=TACCR0_VALUE;
}
hexstring(bitin,0); hexstring(bitin>>1,1);
}
}
llvm msp430 backend , : , , , gcc- , . naken430asm , asm , ...