, , "" , . k height = lg k, 0 < k < n, "" n-k , . lg k + n - k.
. [j * 2 ^ j], j = 0 j = lg k. 2k lg k.
, [i + lg k], = 0 = n-k. (n-k) lg k + (1/2) (n-k) ^ 2.
, n, (1 + k/n) lg k + (n-k) ^ 2/(2n). , 0 < k < n, O (lg n) , k . , , O (lg n). , (n-k) ^ 2 = O (n lg n), k = n - O (sqrt (n lg n)).
lg k + n - k = O (sqrt (n lg n))
it is asymptotically larger than usual O (log n) and is asymptotically the highest, you can make a tree, while maintaining the average depth O (log n)
source
share