Classifying body text with Weka in Java

I am trying to create a text classifier in JAVA with Weka. I have read several lessons and am trying to create my own classifier.

I have the following categories:

    computer,sport,unknown 

and the following already prepared data

 cs belongs to computer
 java -> computer
 soccer -> sport
 snowboard -> sport

So, for example, if the user wants to classify the word java, he must return the computer of the category (no doubt, Java exists only in this category!).

It compiles, but generates a strange output.

Conclusion:

      ====== RESULT ======  CLASSIFIED AS:  [0.5769230769230769, 0.2884615384615385, 0.1346153846153846]
      ====== RESULT ======  CLASSIFIED AS:  [0.42857142857142855, 0.42857142857142855, 0.14285714285714285]

But the first text to classify is java, and it only appears in the computer category, so it should be

      [1.0 0.0 0.0] 

and for another, it should not be found at all, so it should be classified as unknown

      [0.0 0.0 1.0].

Here is the code:

    import java.io.FileNotFoundException;
    import java.io.Serializable;
    import java.util.Arrays;

    import weka.classifiers.Classifier;
    import weka.classifiers.bayes.NaiveBayesMultinomialUpdateable;
    import weka.core.Attribute;
    import weka.core.FastVector;
    import weka.core.Instance;
    import weka.core.Instances;
    import weka.filters.Filter;
    import weka.filters.unsupervised.attribute.StringToWordVector;

    public class TextClassifier implements Serializable {

        private static final long serialVersionUID = -1397598966481635120L;
        public static void main(String[] args) {
            try {
                TextClassifier cl = new TextClassifier(new NaiveBayesMultinomialUpdateable());
                cl.addCategory("computer");
                cl.addCategory("sport");
                cl.addCategory("unknown");
                cl.setupAfterCategorysAdded();

                //
                cl.addData("cs", "computer");
                cl.addData("java", "computer");
                cl.addData("soccer", "sport");
                cl.addData("snowboard", "sport");

                double[] result = cl.classifyMessage("java");
                System.out.println("====== RESULT ====== \tCLASSIFIED AS:\t" + Arrays.toString(result));

                result = cl.classifyMessage("asdasdasd");
                System.out.println("====== RESULT ======\tCLASSIFIED AS:\t" + Arrays.toString(result));
            } catch (Exception e) {
                e.printStackTrace();
            }
        }
        private Instances trainingData;
        private StringToWordVector filter;
        private Classifier classifier;
        private boolean upToDate;
        private FastVector classValues;
        private FastVector attributes;
        private boolean setup;

        private Instances filteredData;

        public TextClassifier(Classifier classifier) throws FileNotFoundException {
            this(classifier, 10);
        }

        public TextClassifier(Classifier classifier, int startSize) throws FileNotFoundException {
            this.filter = new StringToWordVector();
            this.classifier = classifier;
            // Create vector of attributes.
            this.attributes = new FastVector(2);
            // Add attribute for holding texts.
            this.attributes.addElement(new Attribute("text", (FastVector) null));
            // Add class attribute.
            this.classValues = new FastVector(startSize);
            this.setup = false;

        }

        public void addCategory(String category) {
            category = category.toLowerCase();
            // if required, double the capacity.
            int capacity = classValues.capacity();
            if (classValues.size() > (capacity - 5)) {
                classValues.setCapacity(capacity * 2);
            }
            classValues.addElement(category);
        }

        public void addData(String message, String classValue) throws IllegalStateException {
            if (!setup) {
                throw new IllegalStateException("Must use setup first");
            }
            message = message.toLowerCase();
            classValue = classValue.toLowerCase();
            // Make message into instance.
            Instance instance = makeInstance(message, trainingData);
            // Set class value for instance.
            instance.setClassValue(classValue);
            // Add instance to training data.
            trainingData.add(instance);
            upToDate = false;
        }

        /**
         * Check whether classifier and filter are up to date. Build i necessary.
         * @throws Exception
         */
        private void buildIfNeeded() throws Exception {
            if (!upToDate) {
                // Initialize filter and tell it about the input format.
                filter.setInputFormat(trainingData);
                // Generate word counts from the training data.
                filteredData = Filter.useFilter(trainingData, filter);
                // Rebuild classifier.
                classifier.buildClassifier(filteredData);
                upToDate = true;
            }
        }

        public double[] classifyMessage(String message) throws Exception {
            message = message.toLowerCase();
            if (!setup) {
                throw new Exception("Must use setup first");
            }
            // Check whether classifier has been built.
            if (trainingData.numInstances() == 0) {
                throw new Exception("No classifier available.");
            }
            buildIfNeeded();
            Instances testset = trainingData.stringFreeStructure();
            Instance testInstance = makeInstance(message, testset);

            // Filter instance.
            filter.input(testInstance);
            Instance filteredInstance = filter.output();
            return classifier.distributionForInstance(filteredInstance);

        }

        private Instance makeInstance(String text, Instances data) {
            // Create instance of length two.
            Instance instance = new Instance(2);
            // Set value for message attribute
            Attribute messageAtt = data.attribute("text");
            instance.setValue(messageAtt, messageAtt.addStringValue(text));
            // Give instance access to attribute information from the dataset.
            instance.setDataset(data);
            return instance;
        }

        public void setupAfterCategorysAdded() {
            attributes.addElement(new Attribute("class", classValues));
            // Create dataset with initial capacity of 100, and set index of class.
            trainingData = new Instances("MessageClassificationProblem", attributes, 100);
            trainingData.setClassIndex(trainingData.numAttributes() - 1);
            setup = true;
        }

    }

Btw, found a nice page:

http://www.hakank.org/weka/TextClassifierApplet3.html

+5
3

() , . 0 1. (, 0,5), , ( 1, 0 0).

+4

, , , LightSIDE http://lightsidelabs.com. Java WEKA Windows, Mac - WEKA , , , , . ASAP Kaggle.com . , , " ", , , , LightSIDE, , WEKA .

+1

,

return classifier.distributionForInstance(filteredInstance);

to

return classifier.classifyInstance(filteredInstance);

0

All Articles