I want to convert arrays / images to polar 2 in Python 2d, then process and then convert them back to Cartesian. Below is the result of the ImajeJ Polar Transformer plugin (used in concentric circles of the sample code):

The number and size of the images are quite large, so I checked if openCV has a quick and easy way to do this.
I read about cv. CartToPolarand PolarToCart, but I could not use it. I better understand LogPolarwhere the input and output are arrays, and where you can set the center, interpolation and inversion (i.e. CV_WARP_INVERSE_MAP). Is there a way to use CartToPolar / PolarToCart in a similar way?
import numpy as np
import cv
circlesArr = np.ndarray((512,512),dtype=np.float32)
for i in range(10,600,10): cv.Circle(circlesArr,(256,256),i-10,np.random.randint(60,500),thickness=4)
lp = np.ndarray((512,512),dtype=np.float32)
cv.LogPolar(circlesArr,lp,(256,256),100,cv.CV_WARP_FILL_OUTLIERS)
lpinv = np.ndarray((512,512),dtype=np.float32)
cv.LogPolar(lp,lpinv,(256,256),100, cv.CV_WARP_INVERSE_MAP + cv.CV_WARP_FILL_OUTLIERS)
from scipy.misc import toimage
toimage(lp, mode="L").show()
toimage(lpinv, mode="L").show()
(CT), , .