Fast cartesian in polar to cartesian in Python

I want to convert arrays / images to polar 2 in Python 2d, then process and then convert them back to Cartesian. Below is the result of the ImajeJ Polar Transformer plugin (used in concentric circles of the sample code):

enter image description here

The number and size of the images are quite large, so I checked if openCV has a quick and easy way to do this.

I read about cv. CartToPolarand PolarToCart, but I could not use it. I better understand LogPolarwhere the input and output are arrays, and where you can set the center, interpolation and inversion (i.e. CV_WARP_INVERSE_MAP). Is there a way to use CartToPolar / PolarToCart in a similar way?

    import numpy as np
    import cv

    #sample 2D array that featues concentric circles
    circlesArr = np.ndarray((512,512),dtype=np.float32)
    for i in range(10,600,10): cv.Circle(circlesArr,(256,256),i-10,np.random.randint(60,500),thickness=4)

    #logpolar
    lp = np.ndarray((512,512),dtype=np.float32)
    cv.LogPolar(circlesArr,lp,(256,256),100,cv.CV_WARP_FILL_OUTLIERS)

    #logpolar Inverse
    lpinv = np.ndarray((512,512),dtype=np.float32)
    cv.LogPolar(lp,lpinv,(256,256),100, cv.CV_WARP_INVERSE_MAP + cv.CV_WARP_FILL_OUTLIERS)

    #display images
    from scipy.misc import toimage
    toimage(lp, mode="L").show()
    toimage(lpinv, mode="L").show()

(CT), , .

+5
3

CV a LinearPolar. , , , , , LogPolar. ?

+2

opencv cv2.linearPolar. , opencv:

def polar2cart(r, theta, center):

    x = r  * np.cos(theta) + center[0]
    y = r  * np.sin(theta) + center[1]
    return x, y

def img2polar(img, center, final_radius, initial_radius = None, phase_width = 3000):

    if initial_radius is None:
        initial_radius = 0

    theta , R = np.meshgrid(np.linspace(0, 2*np.pi, phase_width), 
                            np.arange(initial_radius, final_radius))

    Xcart, Ycart = polar2cart(R, theta, center)

    Xcart = Xcart.astype(int)
    Ycart = Ycart.astype(int)

    if img.ndim ==3:
        polar_img = img[Ycart,Xcart,:]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width,3))
    else:
        polar_img = img[Ycart,Xcart]
        polar_img = np.reshape(polar_img,(final_radius-initial_radius,phase_width))

    return polar_img
+3

All Articles