Given two DFs with unique indexes and multidimensional columns:
ARS:
arsenal arsenal arsenal arsenal NaN B3 SK BX BY 2015-04-15 NaN NaN NaN 26.0 2015-04-14 NaN NaN NaN NaN 2015-04-13 26.0 26.0 23.0 NaN 2015-04-13 22.0 21.0 19.0 NaN
Che:
chelsea chelsea chelsea chelsea NaN B3 SK BX BY 2015-04-15 NaN NaN NaN 1.01 2015-04-14 1.02 NaN NaN NaN 2015-04-14 NaN 1.05 NaN NaN
here in csv format
,arsenal,arsenal,arsenal,arsenal ,B3,SK,BX,BY 2015-04-15,,,,26.0 2015-04-14,,,, 2015-04-13,26.0,26.0,23.0, 2015-04-13,22.0,21.0,19.0,
,chelsea,chelsea,chelsea,chelsea ,B3,SK,BX,BY 2015-04-15,,,,1.01 2015-04-14,1.02,,, 2015-04-14,,1.05,,
I would like to combine / merge them, join an outer join so that the rows are not discarded.
I would like the result to be:
arsenal arsenal arsenal arsenal chelsea chelsea chelsea chelsea NaN B3 SK BX BY B3 SK BX BY 2015-04-15 NaN NaN NaN 26.0 NaN NaN NaN 1.01 2015-04-14 NaN NaN NaN NaN 1.02 NaN NaN NaN 2015-04-14 NaN NaN NaN NaN NaN 1.05 NaN NaN 2015-04-13 26.0 26.0 23.0 NaN NaN NaN NaN NaN 2015-04-13 22.0 21.0 19.0 NaN NaN NaN NaN NaN
None of the pandas tools I know worked with: merge , join , concat . merge external join gives a point product that is not what I am looking for, and concat cannot handle unique indexes.
Do you have any idea how this can be achieved?
Note: the data length will not be identical.