It seems like this might be a mistake for me, for some reason you don't like your matrix. An attempt to use eigenvals() also simply returns nothing, however, using the Berkovits algorithm gives the expected result (they are correct):
>>> H.berkowitz_eigenvals() {β23.7383543150805:1,101.965215714556:1,120.955771704237:1, 268.369453977695:1,307.126362241411:1,332.004505895816:1,513.317044781366:1}
As an alternative, finding the roots of a polynomial of characters gives the same result:
>>> roots(H.charpoly(x),x) {β23.7383543150805:1,101.965215714556:1,120.955771704237:1, 268.369453977695:1,307.126362241411:1,332.004505895816:1,513.317044781366:1}
As for the workaround, I have no ideas at this time besides using another library, possibly NumPy / SciPy:
>>> from numpy import linalg as LA >>> w,v = LA.eig(np.array([ [215.0 ,-104.1 ,5.1 ,-4.3 ,4.7 ,-15.1 ,-7.8], [-104.1 , 220.0 ,32.6 , 7.1 ,5.4 , 8.3 ,0.8], [ 5.1 , 32.6 , 0. , -46.8 , 1.0 , -8.1 , 5.1 ], [ -4.3 , 7.1 ,-46.8 ,125.0 ,-70.7 ,-14.7 ,-61.5], [ 4.7 , 5.4 , 1.0 ,-70.7 ,450.0 ,89.7 ,-2.5], [-15.1 , 8.3 ,-8.1 ,-14.7 ,89.7 ,330.0 ,32.7], [-7.8 ,0.8 ,5.1 ,-61.5 ,-2.5 ,32.7 ,280.0]]) >>> w;v array([[ 0.0211232 , -0.0863685 , 0.31060486, 0.64800412, 0.58825511, 0.34578278, -0.1004976 ], [-0.03360278, -0.17141713, 0.28577077, 0.60531169, -0.57444552, -0.41080118, 0.15058085], [-0.01492258, 0.91780802, -0.23783515, 0.29790711, -0.04561479, -0.00789624, 0.09974215], [ 0.19183148, 0.33999268, 0.79845203, -0.30609739, 0.01552874, -0.18077 , -0.2889039 ], [-0.86037599, 0.04835763, 0.171535 , -0.10783263, 0.27161704, -0.27390267, 0.25993089], [-0.45801107, 0.01859027, -0.05846719, 0.07732967, -0.35064091, 0.32022588, -0.74497537], [-0.1066849 , 0.05006013, 0.30810033, -0.11677503, -0.35344244, 0.70807431, 0.50125772]])