Reproduction of an initial data frame and introduction of insignificant results:
library(data.table) library(lubridate) df1<- fread("id1,id2,click_timing 1,11,2015-02-03 01:00:00 1,11,2015-02-03 02:00:00 1,12,2015-02-03 03:00:00 1,12,2015-02-03 04:00:00 1,13,2015-02-03 05:10:00 2,34,2015-02-03 03:00:00 2,34,2015-02-03 04:00:00 2,36,2015-02-03 01:00:00") # adding a redundant click_timing2 column to use as the end range for further foverlaps() function df1[, click_timing2:= click_timing] df1[,c("click_timing", "click_timing2"):= list(parse_date_time(click_timing, "%Y-%m-%d %T"), parse_date_time(click_timing2, "%Y-%m-%d %T"))] df2<- fread("id1,id2,start,end 1,11,2015-02-03 00:20:00,2015-02-03 00:40:00 1,11,2015-02-03 00:50:00,2015-02-03 01:20:00 1,13,2015-02-03 01:10:00,2015-02-03 01:40:00 1,13,2015-02-03 04:50:00,2015-02-03 05:30:00 2,34,2015-02-03 03:50:00,2015-02-03 04:10:00") df2[,c("start","end") := list(parse_date_time(start, "%Y-%m-%d %T"), parse_date_time(end, "%Y-%m-%d %T"))] setkey(df2, id1, id2, start, end)
Decision:
df3<- foverlaps(df1, df2, by.x=c("id1", "id2", "click_timing", "click_timing2"), by.y = c("id1", "id2", "start", "end"), type="within") objective_output<- merge(df3, df2, by = c("id1", "id2", "start", "end"), all = T) # deleting redundant click_timing2 column objective_output[,click_timing2:= NULL] # reordering columns setcolorder(objective_output, c(1,2,5,3,4)) #setting key using all columns and thus reordering all rows setkey(objective_output) objective_output #id1 id2 click_timing start end # 1: 1 11 2015-02-03 02:00:00 <NA> <NA> # 2: 1 11 <NA> 2015-02-03 00:20:00 2015-02-03 00:40:00 # 3: 1 11 2015-02-03 01:00:00 2015-02-03 00:50:00 2015-02-03 01:20:00 # 4: 1 12 2015-02-03 03:00:00 <NA> <NA> # 5: 1 12 2015-02-03 04:00:00 <NA> <NA> # 6: 1 13 <NA> 2015-02-03 01:10:00 2015-02-03 01:40:00 # 7: 1 13 2015-02-03 05:10:00 2015-02-03 04:50:00 2015-02-03 05:30:00 # 8: 2 34 2015-02-03 03:00:00 <NA> <NA> # 9: 2 34 2015-02-03 04:00:00 2015-02-03 03:50:00 2015-02-03 04:10:00 #10: 2 36 2015-02-03 01:00:00 <NA> <NA>