I use Gradient boosting for classification. Although the result is improving, but I get NaN in validdeviance.
Model = gbm.fit( x= x_Train , y = y_Train , distribution = "bernoulli", n.trees = GBM_NTREES , shrinkage = GBM_SHRINKAGE , interaction.depth = GBM_DEPTH , n.minobsinnode = GBM_MINOBS , verbose = TRUE )
Result

How to configure a parameter to get a validdeviance.
source share