Another solution is to use str.strip :
df['29'] = df['29'].str.strip(r'\\r') print df id 29 0 location Uttar Pradesh 1 country_name India 2 total_deaths 20
If you want to use replace , add r and one \ :
print df.replace({r'\\r': ''}, regex=True) id 29 0 location Uttar Pradesh 1 country_name India 2 total_deaths 20
In replace you can define the column to replace, for example:
print df id 29 0 location Uttar Pradesh\r 1 country_name India 2 total_deaths\r 20 print df.replace({'29': {r'\\r': ''}}, regex=True) id 29 0 location Uttar Pradesh 1 country_name India 2 total_deaths\r 20 print df.replace({r'\\r': ''}, regex=True) id 29 0 location Uttar Pradesh 1 country_name India 2 total_deaths 20
EDIT by comments:
import pandas as pd df = pd.read_csv('data_source_test.csv') print df id country_name location total_deaths 0 1 India New Delhi 354 1 2 India Tamil Nadu 48 2 3 India Karnataka 0 3 4 India Andra Pradesh 32 4 5 India Assam 679 5 6 India Kerala 128 6 7 India Punjab 0 7 8 India Mumbai, Thane 1 8 9 India Uttar Pradesh\r\n 20 9 10 India Orissa 69 print df.replace({r'\r\n': ''}, regex=True) id country_name location total_deaths 0 1 India New Delhi 354 1 2 India Tamil Nadu 48 2 3 India Karnataka 0 3 4 India Andra Pradesh 32 4 5 India Assam 679 5 6 India Kerala 128 6 7 India Punjab 0 7 8 India Mumbai, Thane 1 8 9 India Uttar Pradesh 20 9 10 India Orissa 69
If you need to replace only the location column:
df['location'] = df.location.str.replace(r'\r\n', '') print df id country_name location total_deaths 0 1 India New Delhi 354 1 2 India Tamil Nadu 48 2 3 India Karnataka 0 3 4 India Andra Pradesh 32 4 5 India Assam 679 5 6 India Kerala 128 6 7 India Punjab 0 7 8 India Mumbai, Thane 1 8 9 India Uttar Pradesh 20 9 10 India Orissa 69
source share