I want to implement a regular applicative instance for lists using my user-defined list:
import Control.Monad import Test.QuickCheck import Test.QuickCheck.Checkers import Test.QuickCheck.Classes data List a = Nil | Cons a (List a) deriving (Eq, Ord, Show) instance Functor List where fmap f (Cons x xs) = Cons (fx) (fmap f xs) fmap f Nil = Nil instance Applicative List where pure x = Cons x Nil (<*>) Nil _ = Nil (<*>) _ Nil = Nil (<*>) (Cons f fs) xs = (+++) (fmap f xs) (fs <*> xs) (+++) :: List a -> List a -> List a (+++) (Cons x Nil) ys = Cons x ys (+++) (Cons x xs) ys = Cons x xs' where xs' = (+++) xs ys instance Arbitrary a => Arbitrary (List a) where arbitrary = sized go where go 0 = pure Nil go n = do xs <- go (n - 1) x <- arbitrary return (Cons x xs) instance (Eq a) => EqProp (List a) where (=-=) = eq main = do let trigger = undefined :: List (Int, String, Int) quickBatch $ applicative trigger
My code passes all application tests to checkers, except for one, the law of composition. When testing the law of composition, an error does not occur, it just does not end.
Does my code persist forever in some way, I canβt see, or is it just a slow process of validating the composer?
This is the error message that I get if I run -c at runtime Checkers:
applicative: identity: +++ OK, passed 500 tests. composition: *** Failed! Exception: 'user interrupt' (after 66 tests): Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> Nil)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> (Cons <function> Nil)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) Cons (-61) (Cons (-24) (Cons 56 (Cons (-10) (Cons 28 (Cons 5 (Cons (-5) (Cons 33 (Cons 18 (Cons 47 (Cons 43 (Cons 43 (Cons (-58) (Cons 35 (Cons (-52) (Cons (-52) (Cons (-41) (Cons 3 (Cons (-7) (Cons (-53) (Cons (-22) (Cons (-20) (Cons (-12) (Cons 46 (Cons (-53) (Cons 35 (Cons (-31) (Cons (-10) (Cons 43 (Cons (-16) (Cons 47 (Cons 53 (Cons 22 (Cons 8 (Cons 1 (Cons (-64) (Cons (-39) (Cons (-57) (Cons 34 (Cons (-31) (Cons 20 (Cons (-39) (Cons (-47) (Cons (-59) (Cons 15 (Cons (-42) (Cons (-31) (Cons 4 (Cons (-62) (Cons (-14) (Cons (-24) (Cons 47 (Cons 42 (Cons 61 (Cons 29 (Cons (-25) (Cons 30 (Cons (-20) (Cons 16 (Cons (-30) (Cons (-38) (Cons (-7) (Cons 16 (Cons 19 (Cons 20 Nil)))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))))) homomorphism: +++ OK, passed 500 tests. interchange: +++ OK, passed 500 tests. functor: +++ OK, passed 500 tests.
If one of the functions is slow, I think it is (+++) , but I do not know how the GHC executes the code well enough to understand why.
Update:
Law of composition:
pure (.) <*> u <*> v <*> w = u <*> (v <*> w)
What can I show with my code for simple examples:
Cons (+1) Nil <*> (Cons (*2) Nil <*> Cons 1 (Cons 2 (Cons 3 Nil)))
and
pure (.) <*> Cons (+1) Nil <*> Cons (*2) Nil <*> Cons 1 (Cons 2 (Cons 3 Nil))
Both give the same result, therefore, why the law of composition never ends, I am very puzzled. Perhaps this is a problem with the checkers library?