Stay with what you have now
## all of this is the same download.file("https://raw.githubusercontent.com/dbouquin/IS_605/master/sgd_ex_data/ex3x.dat", "ex3x.dat", method="curl") x <- read.table('ex3x.dat') x <- scale(x) download.file("https://raw.githubusercontent.com/dbouquin/IS_605/master/sgd_ex_data/ex3y.dat", "ex3y.dat", method="curl") y <- read.table('ex3y.dat') data3 <- cbind(x,y) colnames(data3) <- c("area_sqft", "bedrooms","price") x1 <- rep(1, length(data3$area_sqft)) x <- as.matrix(cbind(x1,x)) y <- as.matrix(y) L <- length(y) cost <- function(x,y,theta){ gradient <- (1/L)* (t(x) %*% ((x%*%t(theta)) - y)) return(t(gradient)) }
I added y to your GD function and created myGoD wrapper myGoD to call you, but first a subset of the data
GD <- function(x, y, alpha){ theta <- matrix(c(0,0,0), nrow=1) theta_r <- NULL for (i in 1:500) { theta <- theta - alpha*cost(x,y,theta) theta_r <- rbind(theta_r,theta) } return(theta_r) } myGoD <- function(x, y, alpha, n = nrow(x)) { idx <- sample(nrow(x), n) y <- y[idx, , drop = FALSE] x <- x[idx, , drop = FALSE] GD(x, y, alpha) }
Make sure it works and try using other Ns
all.equal(GD(x, y, 0.001), myGoD(x, y, 0.001)) # [1] TRUE set.seed(1) head(myGoD(x, y, 0.001, n = 20), 2) # x1 V1 V2 # V1 147.5978 82.54083 29.26000 # V1 295.1282 165.00924 58.48424 set.seed(1) head(myGoD(x, y, 0.001, n = 40), 2) # x1 V1 V2 # V1 290.6041 95.30257 59.66994 # V1 580.9537 190.49142 119.23446
Here is how you can use it.
alphas <- c(0.001,0.01,0.1,1.0) ns <- c(47, 40, 30, 20, 10) par(mfrow = n2mfrow(length(alphas))) for(i in 1:length(alphas)) { # result <- myGoD(x, y, alphas[i]) ## original result <- myGoD(x, y, alphas[i], ns[i]) # red = price # blue = sq ft # green = bedrooms plot(result[,1],ylim=c(min(result),max(result)),col="#CC6666",ylab="Value",lwd=0.35, xlab=paste("alpha=", alphas[i]),xaxt="n") #suppress auto x-axis title lines(result[,2],type="b",col="#0072B2",lwd=0.35) lines(result[,3],type="b",col="#66CC99",lwd=0.35) }

You do not need a wrapper function - you can just slightly modify your GD . It is always good practice to explicitly pass arguments to your functions, rather than relying on scope. Before you assumed that y would be inferred from your global environment; here y must be specified or you will receive an error message. This will avoid many headaches and mistakes in the future.
GD <- function(x, y, alpha, n = nrow(x)){ idx <- sample(nrow(x), n) y <- y[idx, , drop = FALSE] x <- x[idx, , drop = FALSE] theta <- matrix(c(0,0,0), nrow=1) theta_r <- NULL for (i in 1:500) { theta <- theta - alpha*cost(x,y,theta) theta_r <- rbind(theta_r,theta) } return(theta_r) }