We can wrap it desc to get the missing values ββat the beginning
flights %>% arrange(desc(is.na(dep_time)), desc(is.na(dep_delay)), desc(is.na(arr_time)), desc(is.na(arr_delay)), desc(is.na(tailnum)), desc(is.na(air_time)))
NA values ββwere found only in these variables based on
names(flights)[colSums(is.na(flights)) >0] #[1] "dep_time" "dep_delay" "arr_time" "arr_delay" "tailnum" "air_time"
Instead of passing each variable name at a time, we can also use NSE arrange_
nm1 <- paste0("desc(is.na(", names(flights)[colSums(is.na(flights)) >0], "))") r1 <- flights %>% arrange_(.dots = nm1) r1 %>% head() #year month day dep_time sched_dep_time dep_delay arr_time sched_arr_time arr_delay carrier flight tailnum # <int> <int> <int> <int> <int> <dbl> <int> <int> <dbl> <chr> <int> <chr> #1 2013 1 2 NA 1545 NA NA 1910 NA AA 133 <NA> #2 2013 1 2 NA 1601 NA NA 1735 NA UA 623 <NA> #3 2013 1 3 NA 857 NA NA 1209 NA UA 714 <NA> #4 2013 1 3 NA 645 NA NA 952 NA UA 719 <NA> #5 2013 1 4 NA 845 NA NA 1015 NA 9E 3405 <NA> #6 2013 1 4 NA 1830 NA NA 2044 NA 9E 3716 <NA> #Variables not shown: origin <chr>, dest <chr>, air_time <dbl>, distance <dbl>, hour <dbl>, minute <dbl>, # time_hour <time>.
Update
In newer versions of tidyverse ( dplyr_0.7.3 , rlang_0.1.2 ) we can also use arrange_at , arrange_all , arrange_if
nm1 <- names(flights)[colSums(is.na(flights)) >0] r2 <- flights %>% arrange_at(vars(nm1), funs(desc(is.na(.))))
Or use arrange_if
f <- rlang::as_function(~ any(is.na(.))) r3 <- flights %>% arrange_if(f, funs(desc(is.na(.)))) identical(r1, r2) #[1] TRUE identical(r1, r3) #[1] TRUE