My corrr package, which helps explore correlations, has a simple solution for this. I will use the mtcars dataset as an example and say that we want to focus on mpg correlation with all other variables.
install.packages("corrr") # though keep eye out for new version coming soon library(corrr) mtcars %>% correlate() %>% focus(mpg) #> rowname mpg #> <chr> <dbl> #> 1 cyl -0.8521620 #> 2 disp -0.8475514 #> 3 hp -0.7761684 #> 4 drat 0.6811719 #> 5 wt -0.8676594 #> 6 qsec 0.4186840 #> 7 vs 0.6640389 #> 8 am 0.5998324 #> 9 gear 0.4802848 #> 10 carb -0.5509251
Here correlate() creates a frame of correlation data, and focus() allows you to focus on the correlations of certain variables with everyone else.
FYI, focus() works similarly to select() from the dplyr package, except that it modifies rows as well as columns. Therefore, if you are familiar with select() , you should easily use focus() . For instance:.
mtcars %>% correlate() %>% focus(mpg:drat) #> rowname mpg cyl disp hp drat #> <chr> <dbl> <dbl> <dbl> <dbl> <dbl> #> 1 wt -0.8676594 0.7824958 0.8879799 0.6587479 -0.71244065 #> 2 qsec 0.4186840 -0.5912421 -0.4336979 -0.7082234 0.09120476 #> 3 vs 0.6640389 -0.8108118 -0.7104159 -0.7230967 0.44027846 #> 4 am 0.5998324 -0.5226070 -0.5912270 -0.2432043 0.71271113 #> 5 gear 0.4802848 -0.4926866 -0.5555692 -0.1257043 0.69961013 #> 6 carb -0.5509251 0.5269883 0.3949769 0.7498125 -0.09078980
source share