When you read Julian's date file, you just need to provide your own date parsing function. Here are some examples:
import datetime from io import StringIO import pandas datafile = StringIO("""\ jday,value 2013-01,1 2013-02,2 2013-100,8 2013-200,9 """) dateparser = lambda x: datetime.datetime.strptime(x, '%Y-%j') df = pandas.read_csv(datafile, parse_dates=True, date_parser=dateparser, index_col=[0])
What gives df of:
value jday 2013-01-01 1 2013-01-02 2 2013-04-10 8 2013-07-19 9
I save this bookmarked page and convenient for "non-traditional" date parsing such as these. (I really don't think Julian days are strange - we use them all the time in hydraulic modeling)
source share