using DataFrames, Requests julia> resp = get("https://data.cityofnewyork.us/api/views/kku6-nxdu/rows.csv?accessType=DOWNLOAD") Response(200 OK, 17 headers, 27350 bytes in body) julia> tbl = readtable(IOBuffer(resp.data)); julia> names(tbl) 46-element Array{Symbol,1}: :JURISDICTION_NAME :COUNT_PARTICIPANTS :COUNT_FEMALE :PERCENT_FEMALE :COUNT_MALE :PERCENT_MALE :COUNT_GENDER_UNKNOWN :PERCENT_GENDER_UNKNOWN :COUNT_GENDER_TOTAL :PERCENT_GENDER_TOTAL :COUNT_PACIFIC_ISLANDER :PERCENT_PACIFIC_ISLANDER :COUNT_HISPANIC_LATINO :PERCENT_HISPANIC_LATINO :COUNT_AMERICAN_INDIAN :PERCENT_AMERICAN_INDIAN :COUNT_ASIAN_NON_HISPANIC ⋮ :PERCENT_PERMANENT_RESIDENT_ALIEN :COUNT_US_CITIZEN :PERCENT_US_CITIZEN :COUNT_OTHER_CITIZEN_STATUS :PERCENT_OTHER_CITIZEN_STATUS :COUNT_CITIZEN_STATUS_UNKNOWN :PERCENT_CITIZEN_STATUS_UNKNOWN :COUNT_CITIZEN_STATUS_TOTAL :PERCENT_CITIZEN_STATUS_TOTAL :COUNT_RECEIVES_PUBLIC_ASSISTANCE :PERCENT_RECEIVES_PUBLIC_ASSISTANCE :COUNT_NRECEIVES_PUBLIC_ASSISTANCE :PERCENT_NRECEIVES_PUBLIC_ASSISTANCE :COUNT_PUBLIC_ASSISTANCE_UNKNOWN :PERCENT_PUBLIC_ASSISTANCE_UNKNOWN :COUNT_PUBLIC_ASSISTANCE_TOTAL :PERCENT_PUBLIC_ASSISTANCE_TOTAL julia> eltypes(tbl) 46-element Array{Type,1}: Int64 Int64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64 Int64 Float64 Int64 Float64 Int64 Float64 Int64 ⋮ Float64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64 Int64 Float64 Int64 Float64 Int64 Int64 Int64 Int64
source share