Possible duplicate:
Fast reading of very large tables as data in R
Hi,
trying to read a large dataset in R, the console displayed the following errors:
data<-read.csv("UserDailyStats.csv", sep=",", header=T, na.strings="-", stringsAsFactors=FALSE) > data = data[complete.cases(data),] > dataset<-data.frame(user_id=as.character(data[,1]),event_date= as.character(data[,2]),day_of_week=as.factor(data[,3]),distinct_events_a_count=as.numeric(as.character(data[,4])),total_events_a_count=as.numeric(as.character(data[,5])),events_a_duration=as.numeric(as.character(data[,6])),distinct_events_b_count=as.numeric(as.character(data[,7])),total_events_b=as.numeric(as.character(data[,8])),events_b_duration= as.numeric(as.character(data[,9]))) Error: cannot allocate vector of size 94.3 Mb In addition: Warning messages: 1: In data.frame(user_msisdn = as.character(data[, 1]), calls_date = as.character(data[, : NAs introduced by coercion 2: In data.frame(user_msisdn = as.character(data[, 1]), calls_date = as.character(data[, : NAs introduced by coercion 3: In class(value) <- "data.frame" : Reached total allocation of 3583Mb: see help(memory.size) 4: In class(value) <- "data.frame" : Reached total allocation of 3583Mb: see help(memory.size)
Does anyone know how to read large datasets? UserDailyStats.csv is approximately 2 GB in size.
source share