Sounds like a task for the grill:
X <- as.data.frame(as.table(t_weekmean), stringsAsFactors=FALSE, responseName="values") X$variable <- as.numeric(gsub("^X","",X$variable)) X$Temp <- as.numeric(X$Temp) require(lattice) xyplot(values~variable|Week, groups=Temp, X, type="o", as.table=TRUE, xlab="Weight (gr)", ylab="Rate (umol/L*gr)", main="All individuals and Treatments at all times" )

I recreate your data as:
t_weekmean <- structure(c(100, 98.855, 98.004, 95.953, 95.235, 100, 98.591, 97.804, 96.999, 96.078, 100, 98.357, 97.638, 96.81, 95.346, 100, 99.003, 98.299, 97.555, 96.665, 100, 99.137, 98.42, 97.939, 96.998, 100, 99.035, 98.298, 97.181, 96.237, 100, 97.883, 96.459, 94.406, 91.906, 100, 99.055, 97.765, 96.546, 95.263, 99.9889679441867, 98.8470416045204, 98.010997102523, 95.9636806506725, 95.235986063534, 100.00797414162, 98.5968712619705, 97.7984016535804, 96.9904933552904, 96.0816877686208, 99.9946318131395, 98.3568674165109, 97.6357767063124, 96.8119443900658, 95.3441814383421, 99.989633272252, 99.0037062049508, 98.3034580102509, 97.5568340624981, 96.6615796074679, 100.000379644977, 99.1375077671092, 98.4187321210541, 97.9350205929782, 97.0006243532971, 100.003971157774, 99.0316462150477, 98.298322594611, 97.1782003010139, 96.239865449585, 100.002464797458, 97.8810655647218, 96.4592857614756, 94.4099917372801, 91.9025173998885, 100.003642400375, 99.0529984607268, 97.76302246443, 96.5426428484451, 95.2658935513329), .Dim = c(5L, 4L, 4L), .Dimnames = structure(list(variable = c("X0", "X0.5", "X1", "X1.5", "X2"), Temp = c("9", "12", "15", "18"), Week = c("1", "2", "3", "4")), .Names = c("variable", "Temp", "Week")) )