Something like that?
ClearAll[u, v, f]; f[z_] := Sin[z] u[x_, y_] := Re@f [x + I*y]; v[x_, y_] := Im@f [x + I*y];

EDIT: It just produces everything. If you just want to see what happens for one path parallel to an imaginary axis, try
ParametricPlot[{u[5, y], v[5, y]}, {y, -3, 3}]
or for the same parallel with the real try axis
ParametricPlot[{u[x, 1], v[x, 1]}, {x, -3, 3}]
EDIT2: Interactive:
ClearAll[u, v, f]; f[z_] := Sin[z] u[x_, y_] := Re@f [x + I*y]; v[x_, y_] := Im@f [x + I*y]; Manipulate[ Show[ Graphics[{Line[{p1, p2}]}, PlotRange \[Rule] 3, Axes \[Rule] True], ParametricPlot[ {u[p1[[1]] + t (p2[[1]] - p1[[1]]), p1[[2]] + t (p2[[2]] - p1[[2]])], v[p1[[1]] + t (p2[[1]] - p1[[1]]), p1[[2]] + t (p2[[2]] - p1[[2]])]}, {t, 0, 1}, PlotRange \[Rule] 3]], {{p1, {0, 1}}, Locator}, {{p2, {1, 2}}, Locator}]
(ugly, yes, but time cannot be fixed). Typical Output: 
or

The idea is that you can change the line on the left side of the figures that you give (by clicking on the plot, which is a click on the Argand diagram ...) and see the corresponding images.