I would like to make a graph of interaction to visually display the difference or similarity in the slopes of the interaction of a categorical variable (4 levels) and a standardized continuous variable from the results of the regression model.
with(GLMModel, interaction.plot(continuous.var, categorical.var, response.var))
Not what I'm looking for. It creates a graph in which the slope changes for each value of the continuous variable. I want to make a graph with constant slopes, as in the following figure:
Any ideas?
I approach a model of the form fit<-glmer(resp.var ~ cont.var*cat.var + (1|rand.eff) , data = sample.data , poisson)
Here are some examples of data:
structure(list(cat.var = structure(c(4L, 4L, 1L, 4L, 1L, 2L, 1L, 1L, 1L, 1L, 4L, 1L, 1L, 3L, 2L, 4L, 1L, 1L, 1L, 2L, 1L, 2L, 2L, 1L, 3L, 1L, 1L, 2L, 4L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 3L, 3L, 4L, 3L, 4L, 1L, 3L, 3L, 1L, 2L, 3L, 4L, 3L, 4L, 2L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 1L, 4L, 1L, 4L, 4L, 3L, 3L, 1L, 3L, 3L, 3L, 1L, 2L, 1L, 1L, 1L, 1L, 2L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 4L, 1L, 3L, 1L, 1L, 3L, 2L, 4L, 1L, 4L, 1L, 4L, 4L, 4L, 4L, 2L, 4L, 4L, 1L, 2L, 1L, 4L, 3L, 1L, 1L, 3L, 2L, 4L, 4L, 1L, 4L, 1L, 3L, 2L, 1L, 2L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 1L, 2L, 4L, 1L, 2L, 2L, 1L, 1L, 2L, 3L, 1L, 4L, 4L, 4L, 1L, 4L, 4L, 3L, 2L, 4L, 1L, 3L, 1L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 3L, 4L, 2L, 1L, 3L, 3L, 4L, 3L, 2L, 3L, 1L, 4L, 2L, 2L, 1L, 4L, 1L, 2L, 3L, 4L, 1L, 4L, 2L, 1L, 3L, 3L, 3L, 4L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 2L, 1L, 4L, 1L, 1L, 1L, 2L, 1L, 1L, 4L, 1L, 3L, 1L, 2L, 1L, 4L, 1L, 2L, 4L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 1L, 1L, 3L, 1L, 3L, 4L, 1L, 4L, 3L, 3L, 3L, 4L, 1L, 3L, 1L, 1L, 4L, 4L, 4L, 4L, 2L, 1L, 1L, 3L, 2L, 1L, 4L, 4L, 2L, 4L, 2L, 4L, 1L, 3L, 4L, 1L, 1L, 2L, 3L, 2L, 4L, 1L, 1L, 3L, 4L, 2L, 2L, 3L, 4L, 1L, 2L, 3L, 1L, 2L, 4L, 1L, 4L, 2L, 4L, 3L, 4L, 2L, 1L, 1L, 1L, 1L, 1L, 4L, 4L, 1L, 4L, 4L, 1L, 4L, 2L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 3L, 3L, 2L, 2L, 1L, 1L, 4L, 1L, 4L, 3L, 1L, 2L, 1L, 4L, 2L, 4L, 4L, 1L, 2L, 1L, 1L, 1L, 4L, 1L, 4L, 1L, 2L, 1L, 3L, 1L, 3L, 3L, 1L, 1L, 4L, 3L, 1L, 4L, 1L, 2L, 4L, 1L, 1L, 3L, 3L, 2L, 4L, 4L, 1L, 1L, 2L, 2L, 1L, 2L, 4L, 3L, 4L, 4L, 4L, 4L, 1L, 3L, 1L, 2L, 2L, 2L, 4L, 2L, 3L, 4L, 1L, 3L, 2L, 2L, 1L, 1L, 1L, 3L, 1L, 2L, 2L, 1L, 1L, 3L, 2L, 1L, 1L, 1L, 1L, 2L, 1L, 1L, 1L, 4L, 4L, 4L, 3L, 3L, 2L, 1L, 3L, 2L, 1L, 1L, 1L, 4L, 1L, 1L, 2L, 3L, 1L, 1L, 2L, 4L, 3L, 2L, 4L, 3L, 2L, 1L, 3L, 1L, 3L, 1L, 4L, 3L, 1L, 4L, 4L, 2L, 4L, 1L, 1L, 2L, 4L, 4L, 2L, 3L, 4L, 4L, 3L, 1L, 4L, 1L, 2L, 4L, 1L, 1L, 4L, 1L, 1L, 1L, 1L, 1L, 3L, 4L, 1L, 4L, 4L, 2L, 2L, 2L, 2L, 3L, 4L, 4L, 1L, 1L, 4L, 2L, 3L, 3L, 1L, 1L, 1L, 1L, 3L, 1L, 1L, 1L, 3L, 4L, 2L, 3L, 1L, 1L, 1L, 4L, 1L, 1L, 4L, 4L, 4L, 1L, 1L, 1L, 1L), .Label = c("A", "B", "C", "D"), class = "factor"), cont.var = c(-0.0682900527296927, 0.546320421837542, -0.273160210918771, -0.887770685486005, 0.136580105459385, 0.75119058002662, 0.546320421837542, -0.273160210918771, -0.682900527296927, 0.136580105459385, 0.75119058002662, 0.75119058002662, 0.75119058002662, 0.341450263648464, 0.75119058002662, 0.546320421837542, 0.546320421837542, -0.478030369107849, -0.478030369107849, -0.682900527296927, -0.682900527296927, 0.546320421837542, -0.478030369107849, -0.0682900527296927, 0.136580105459385, 0.136580105459385, 0.75119058002662, -0.478030369107849, 0.75119058002662, -0.887770685486005, 0.136580105459385, -0.478030369107849, 0.341450263648464, -0.682900527296927, -0.478030369107849, 0.341450263648464, -0.478030369107849, 0.546320421837542, 0.75119058002662, -0.478030369107849, -0.273160210918771, 0.546320421837542, -0.682900527296927, 0.75119058002662, -0.478030369107849, -0.887770685486005, 0.136580105459385, -0.887770685486005, -0.0682900527296927, -0.478030369107849, 0.546320421837542, 0.75119058002662, 0.136580105459385, -0.273160210918771, -0.273160210918771, 0.75119058002662, -0.682900527296927, 0.136580105459385, -0.273160210918771, -0.273160210918771, 0.136580105459385, 0.136580105459385, 0.341450263648464, 0.136580105459385, -0.273160210918771, -0.273160210918771, -0.682900527296927, -0.887770685486005, -0.0682900527296927, 0.136580105459385, -0.0682900527296927, -0.273160210918771, -0.273160210918771, 0.341450263648464, 0.75119058002662, -0.682900527296927, -0.0682900527296927, -0.273160210918771, -0.887770685486005, -0.0682900527296927, 0.75119058002662, 0.546320421837542, 0.75119058002662, 0.75119058002662, -0.887770685486005, 0.341450263648464, 0.75119058002662, -0.887770685486005, 0.136580105459385, -0.273160210918771, 0.546320421837542, 0.546320421837542, -0.682900527296927, 0.75119058002662, 0.136580105459385, -0.0682900527296927, -0.478030369107849, 0.75119058002662, -0.478030369107849, 0.341450263648464, 0.136580105459385, -0.0682900527296927, -0.478030369107849, -0.0682900527296927, -0.0682900527296927, 0.546320421837542, -0.273160210918771, 0.75119058002662, 0.341450263648464, 0.546320421837542, -0.478030369107849, 0.136580105459385, -0.887770685486005, -0.273160210918771, -0.273160210918771, -0.478030369107849, -0.478030369107849, 0.75119058002662, -0.682900527296927, -0.0682900527296927, 0.546320421837542, 0.75119058002662, 0.546320421837542, 0.136580105459385, -0.478030369107849, 0.136580105459385, 0.546320421837542, -0.478030369107849, -0.0682900527296927, -0.0682900527296927, 0.546320421837542, -0.273160210918771, 0.136580105459385, -0.0682900527296927, 0.75119058002662, -0.0682900527296927, 0.546320421837542, -0.887770685486005, -0.0682900527296927, -0.682900527296927, -0.478030369107849, -0.478030369107849, -0.682900527296927, 0.75119058002662, 0.341450263648464, -0.0682900527296927, 0.341450263648464, -0.0682900527296927, -0.887770685486005, -0.887770685486005, -0.273160210918771, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, -0.0682900527296927, 0.75119058002662, -0.0682900527296927, -0.273160210918771, -0.478030369107849, 0.546320421837542, 0.546320421837542, 0.546320421837542, 0.341450263648464, 0.136580105459385, -0.478030369107849, 0.136580105459385, 0.136580105459385, 0.136580105459385, -0.478030369107849, -0.273160210918771, -0.273160210918771, -0.273160210918771, 0.341450263648464, -0.273160210918771, -0.0682900527296927, 0.136580105459385, 0.546320421837542, -0.478030369107849, -0.273160210918771, 0.546320421837542, 0.546320421837542, -0.273160210918771, -0.0682900527296927, 0.341450263648464, 0.546320421837542, -0.0682900527296927, 0.136580105459385, -0.478030369107849, 0.75119058002662, -0.478030369107849, -0.682900527296927, -0.478030369107849, 0.136580105459385, -0.273160210918771, -0.0682900527296927, -0.887770685486005, -0.887770685486005, 0.546320421837542, -0.273160210918771, 0.546320421837542, -0.478030369107849, 0.546320421837542, -0.0682900527296927, 0.75119058002662, -0.273160210918771, 0.546320421837542, 0.341450263648464, -0.0682900527296927, -0.0682900527296927, -0.0682900527296927, -0.887770685486005, 0.136580105459385, -0.273160210918771, -0.478030369107849, 0.75119058002662, 0.341450263648464, 0.546320421837542, -0.273160210918771, 0.546320421837542, 0.75119058002662, -0.273160210918771, 0.75119058002662, 0.546320421837542, -0.273160210918771, -0.273160210918771, 0.75119058002662, -0.273160210918771, -0.0682900527296927, 0.136580105459385, -0.478030369107849, 0.75119058002662, 0.75119058002662, -0.887770685486005, -0.887770685486005, 0.546320421837542, -0.682900527296927, -0.887770685486005, 0.136580105459385, 0.75119058002662, 0.75119058002662, -0.478030369107849, 0.136580105459385, 0.75119058002662, -0.273160210918771, -0.682900527296927, -0.273160210918771, 0.136580105459385, 0.546320421837542, -0.682900527296927, -0.478030369107849, 0.136580105459385, -0.682900527296927, -0.0682900527296927, -0.478030369107849, 0.136580105459385, -0.887770685486005, -0.273160210918771, -0.0682900527296927, -0.273160210918771, -0.887770685486005, 0.546320421837542, 0.546320421837542, -0.478030369107849, -0.273160210918771, -0.0682900527296927, 0.136580105459385, -0.478030369107849, 0.75119058002662, 0.341450263648464, 0.136580105459385, 0.136580105459385, 0.75119058002662, 0.136580105459385, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, -0.887770685486005, 0.75119058002662, 0.75119058002662, 0.546320421837542, -0.887770685486005, -0.0682900527296927, -0.682900527296927, -0.682900527296927, 0.75119058002662, 0.75119058002662, -0.478030369107849, 0.546320421837542, -0.273160210918771, 0.75119058002662, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, -0.273160210918771, 0.546320421837542, 0.75119058002662, -0.0682900527296927, 0.546320421837542, -0.682900527296927, -0.273160210918771, -0.0682900527296927, -0.478030369107849, -0.478030369107849, 0.136580105459385, -0.273160210918771, 0.136580105459385, 0.546320421837542, 0.75119058002662, -0.273160210918771, 0.341450263648464, -0.273160210918771, 0.136580105459385, 0.546320421837542, 0.546320421837542, 0.136580105459385, 0.136580105459385, -0.682900527296927, 0.341450263648464, 0.341450263648464, -0.273160210918771, -0.682900527296927, -0.0682900527296927, 0.75119058002662, -0.887770685486005, -0.478030369107849, -0.273160210918771, -0.478030369107849, -0.478030369107849, 0.136580105459385, -0.478030369107849, 0.136580105459385, -0.478030369107849, 0.136580105459385, -0.0682900527296927, -0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849, 0.75119058002662, 0.136580105459385, 0.341450263648464, 0.546320421837542, -0.887770685486005, 0.75119058002662, 0.341450263648464, -0.0682900527296927, -0.478030369107849, 0.546320421837542, 0.136580105459385, -0.682900527296927, -0.0682900527296927, 0.341450263648464, -0.478030369107849, -0.0682900527296927, -0.478030369107849, -0.0682900527296927, 0.341450263648464, -0.478030369107849, -0.682900527296927, 0.75119058002662, -0.478030369107849, -0.682900527296927, 0.341450263648464, -0.887770685486005, -0.478030369107849, 0.546320421837542, -0.887770685486005, -0.478030369107849, -0.478030369107849, 0.341450263648464, 0.75119058002662, -0.682900527296927, 0.75119058002662, 0.75119058002662, 0.341450263648464, -0.0682900527296927, 0.546320421837542, -0.0682900527296927, 0.136580105459385, 0.136580105459385, 0.136580105459385, 0.136580105459385, 0.546320421837542, 0.546320421837542, -0.0682900527296927, 0.75119058002662, -0.0682900527296927, -0.0682900527296927, -0.682900527296927, -0.273160210918771, -0.682900527296927, -0.478030369107849, 0.136580105459385, 0.75119058002662, 0.546320421837542, 0.341450263648464, -0.887770685486005, -0.0682900527296927, 0.136580105459385, 0.75119058002662, -0.273160210918771, -0.682900527296927, 0.136580105459385, -0.478030369107849, -0.273160210918771, -0.273160210918771, 0.136580105459385, 0.341450263648464, -0.478030369107849, -0.0682900527296927, -0.682900527296927, 0.75119058002662, -0.273160210918771, -0.478030369107849, -0.0682900527296927, -0.0682900527296927, -0.273160210918771, -0.0682900527296927, -0.478030369107849, 0.75119058002662, -0.0682900527296927, 0.136580105459385, 0.546320421837542, 0.546320421837542, -0.478030369107849, -0.273160210918771, 0.546320421837542, -0.478030369107849, -0.682900527296927, 0.75119058002662, -0.0682900527296927, -0.682900527296927, -0.682900527296927, 0.75119058002662, 0.341450263648464, -0.478030369107849, 0.75119058002662, 0.136580105459385, -0.887770685486005, 0.341450263648464, 0.341450263648464, 0.546320421837542, -0.273160210918771, 0.136580105459385, 0.75119058002662, -0.0682900527296927, -0.682900527296927, -0.478030369107849, -0.478030369107849, 0.75119058002662, 0.546320421837542, -0.478030369107849, 0.546320421837542, 0.136580105459385, -0.887770685486005, 0.75119058002662, -0.0682900527296927, 0.75119058002662, 0.75119058002662, -0.273160210918771, -0.682900527296927, 0.546320421837542, 0.546320421837542, -0.887770685486005, 0.75119058002662, -0.273160210918771, 0.546320421837542, -0.0682900527296927, 0.136580105459385, 0.341450263648464, -0.478030369107849, 0.136580105459385, 0.136580105459385, -0.273160210918771, 0.546320421837542, -0.273160210918771, -0.273160210918771, -0.273160210918771, 0.75119058002662, -0.887770685486005, -0.887770685486005, -0.0682900527296927, -0.478030369107849, -0.0682900527296927, 0.75119058002662, -0.273160210918771, 0.136580105459385, -0.478030369107849, -0.273160210918771, 0.136580105459385, 0.75119058002662, 0.546320421837542, -0.478030369107849, -0.273160210918771, -0.273160210918771, 0.136580105459385, -0.273160210918771, -0.0682900527296927, 0.75119058002662, 0.136580105459385), resp.var = c(2L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 3L, 1L, 0L, 1L, 0L, 1L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 2L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 3L, 2L, 0L, 2L, 2L, 0L, 0L, 0L, 1L, 1L, 3L, 1L, 2L, 0L, 1L, 0L, 0L, 1L, 0L, 2L, 0L, 2L, 4L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 2L, 3L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 0L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 0L, 2L, 0L, 1L, 0L, 4L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 1L, 3L, 0L, 2L, 0L, 0L, 2L, 1L, 0L, 0L, 2L, 0L, 0L, 0L, 2L, 0L, 0L, 3L, 0L, 0L, 2L, 1L, 1L, 0L, 0L, 3L, 1L, 1L, 2L, 0L, 2L, 0L, 2L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 2L, 2L, 1L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 6L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 3L, 1L, 0L, 2L, 3L, 0L, 0L, 1L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 1L, 2L, 1L, 1L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 1L, 1L, 0L, 0L, 2L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 1L, 0L, 2L, 1L, 0L, 1L, 0L, 1L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 3L, 0L, 0L, 3L, 0L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 1L, 1L, 0L, 2L, 2L, 0L, 2L, 1L, 0L, 2L, 0L, 0L, 0L, 0L, 3L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 2L, 0L, 1L, 1L, 0L, 1L, 0L, 3L, 1L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 2L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 0L, 0L, 2L, 0L, 2L, 0L, 3L, 0L, 0L, 0L, 0L, 1L, 0L, 0L, 3L, 1L, 1L, 2L, 0L, 0L, 3L, 0L, 0L, 0L, 1L, 1L, 0L, 1L, 3L, 0L, 2L, 0L, 0L, 1L, 3L, 1L, 0L, 0L, 4L, 3L, 0L, 2L, 0L, 0L, 0L, 3L, 0L, 0L, 2L, 3L, 0L, 1L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 0L, 0L, 3L, 3L, 2L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 2L, 0L, 0L, 0L, 0L, 0L, 1L, 0L, 2L, 0L, 0L, 1L, 0L, 0L, 1L, 2L, 0L, 1L, 0L, 2L, 1L, 0L, 1L, 1L, 0L, 0L, 0L, 0L, 3L, 1L, 0L, 0L, 0L, 0L, 0L, 1L, 2L, 0L, 2L, 0L, 1L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 0L, 1L, 0L, 0L, 3L, 2L, 2L, 0L, 1L, 0L, 5L, 0L, 4L, 2L, 0L, 3L, 0L, 0L, 1L, 1L, 0L, 0L, 0L, 2L, 0L, 1L, 0L, 3L, 0L, 2L, 0L, 0L, 0L, 2L, 0L), rand.eff = c(37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 37L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 40L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L, 43L)), .Names = c("cat.var", "cont.var", "resp.var", "rand.eff"), row.names = c(NA, 500L), class = "data.frame")